This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274368 #37 Aug 16 2025 23:52:13 %S A274368 45,48,231,121116,159229,11985489,17514256,51624256,88172137, %T A274368 228523729,467597425,11112111412,4329279198937,3716589421762641, %U A274368 23228676113127556,138417183479417732388 %N A274368 Numbers k such that if k is decreased by the sum of its digits and k is decreased by the product of its digits both differences are squares > 0. %C A274368 It appears that if k is increased by the sum of its digits and k is increased by the product of its digits no two squares are found, except for the trivial k = 2 and k = 8. %C A274368 The smallest k>8 such that k+A007953(k) and k+A007954(k) are both squares is k = 6469753431969. If a fourth such k exists, it must be larger than 1.6*10^19. - _Giovanni Resta_, Jun 19 2016 %e A274368 45 - (4 + 5) = 36 and 45 - (4 * 5) = 25. %e A274368 159229 - (1 + 5 + 9 + 2 + 2 + 9) = 157609 (= 397^2) and 159229 - (1*5*9*2*2*9) = 159201 (= 399^2). %e A274368 From _David A. Corneth_, May 27 2021: (Start) %e A274368 If the digits of a(n) = x are an anagram of 122599 then the product of digits is 1 * 2 * 2 * 5 * 9 * 9 = 1620 and the sum of digits is 1 + 2 + 2 + 5 + 9 + 9 = 28 as order of addition and multiplication does not matter. So x - 31 = m^2 and x - 1620 = k^2 for some positive integers k and m. %e A274368 So m^2 - k^2 = (x - 28) - (x - 1620) = 1592 = (m - k)*(m + k). The divisors of 1592 are 1, 2, 4, 8, 199, 398, 796, 1592. Testing possible pairs m-k and m+k gives, among other pairs, (m - k, m + k) = (2, 796). Solving for k gives k = 397 so x = k^2 + 1620 = 397^2 + 1620 = 159229 giving an extra term. (End) %t A274368 lim = 10^6; s = Select[Range@ lim, IntegerQ@ # && # != 0 &@ Sqrt[# - Times @@ IntegerDigits@ #] &]; t = Select[Range@ lim, IntegerQ@ # && # != 0 &@ Sqrt[# - Total@ IntegerDigits@ #] &]; Intersection[s, t] (* _Michael De Vlieger_, Jun 19 2016 *) %o A274368 (Python) %o A274368 def pod(n): %o A274368 p = 1 %o A274368 for x in str(n): %o A274368 p *= int(x) %o A274368 return p %o A274368 def sod(n): %o A274368 return sum(int(d) for d in str(n)) %o A274368 def cube(z,p): %o A274368 iscube=False %o A274368 y=int(pow(z,1/p)+0.01) %o A274368 if y**p==z: %o A274368 iscube=True %o A274368 return iscube %o A274368 for c in range(1, 10**8): %o A274368 aa,ab=c-pod(c),c-sod(c) %o A274368 if cube(aa,2) and cube(ab,2) and aa>0: %o A274368 print(c,aa,ab) %o A274368 (PARI) a007953(n) = sumdigits(n) %o A274368 a007954(n) = my(d=digits(n)); prod(i=1, #d, d[i]) %o A274368 is(n) = n > 9 && issquare(n-a007953(n)) && issquare(n-a007954(n)) \\ _Felix Fröhlich_, Jun 19 2016 %Y A274368 Cf. A007953, A007954, A009994, A061672. %Y A274368 Intersection of A066566 and A228187. %K A274368 nonn,base,more %O A274368 1,1 %A A274368 _Pieter Post_, Jun 19 2016 %E A274368 a(10)-a(15) from _Giovanni Resta_, Jun 19 2016 %E A274368 a(16) from _David A. Corneth_, May 27 2021