This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274369 #27 May 15 2021 05:45:20 %S A274369 0,0,1,1,0,0,-1,-1,0,0,1,1,0,0,1,1,0,0,1,1,2,2,1,1,2,2,3,3,2,2,1,1,2, %T A274369 2,3,3,4,4,3,3,2,2,3,3,2,2,3,3,2,2,1,1,0,0,-1,-1,0,0,-1,-1,0,0,-1,-1, %U A274369 -2,-2,-1,-1,-2,-2,-3,-3,-2,-2,-1,-1,-2,-2,-3 %N A274369 Let the starting square of Langton's ant have coordinates (0, 0), with the ant looking in negative x-direction. a(n) is the x-coordinate of the ant after n moves. %H A274369 Rémy Sigrist, <a href="/A274369/b274369.txt">Table of n, a(n) for n = 0..15000</a> %H A274369 Felix Fröhlich, <a href="/A274369/a274369.pdf">Coordinates of Langton's ant</a>. %H A274369 Wikipedia, <a href="https://en.wikipedia.org/wiki/Langton%27s_ant">Langton's ant</a>. %F A274369 a(n+104) = a(n) + 2 for n > 9975. - _Andrey Zabolotskiy_, Jul 05 2016 %o A274369 (Python) %o A274369 # A274369: Langton's ant by _Andrey Zabolotskiy_, Jul 05 2016 %o A274369 def ant(n): %o A274369 steps = [(1, 0), (0, 1), (-1, 0), (0, -1)] %o A274369 black = set() %o A274369 x = y = 0 %o A274369 position = [(x, y)] %o A274369 direction = 2 %o A274369 for _ in range(n): %o A274369 if (x, y) in black: %o A274369 black.remove((x, y)) %o A274369 direction += 1 %o A274369 else: %o A274369 black.add((x, y)) %o A274369 direction -= 1 %o A274369 (dx, dy) = steps[direction%4] %o A274369 x += dx %o A274369 y += dy %o A274369 position.append((x, y)) %o A274369 return position %o A274369 print([p[0] for p in ant(100)]) %o A274369 # change p[0] to p[1] to get y-coordinates %Y A274369 Cf. A274370 (y-coordinate). %Y A274369 Cf. A102358, A102369, A204810, A255938, A261990, A269757. %K A274369 sign,look %O A274369 0,21 %A A274369 _Felix Fröhlich_, Jun 19 2016