cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274373 Sum of the areas of all modified skew Dyck paths of semilength n.

This page as a plain text file.
%I A274373 #13 Dec 29 2020 09:03:55
%S A274373 0,1,6,35,188,989,5131,26411,135229,689814,3509014,17811637,90256685,
%T A274373 456719880,2308440442,11656409995,58809893357,296500180806,
%U A274373 1493924791698,7523064390774,37866103978109,190510720248534,958122016323881,4816944544836927,24209532464417585
%N A274373 Sum of the areas of all modified skew Dyck paths of semilength n.
%C A274373 A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.
%C A274373 a(n)^(1/n) tends to 5. - _Vaclav Kotesovec_, Jun 26 2016
%H A274373 Alois P. Heinz, <a href="/A274373/b274373.txt">Table of n, a(n) for n = 0..500</a>
%F A274373 a(n) = Sum_{k=n..n^2} k * A274372(n,k).
%e A274373 a(3) = 35 = 9+7+5+6+5+3 = sum of the areas of UUUDDD, UUDUDD, UUDDUD, UAUDDD, UDUUDD, UDUDUD, respectively.
%p A274373 b:= proc(x, y, t, n) option remember; `if`(y>n, 0, `if`(n=y,
%p A274373      `if`(t=2, 0, [1, 0]), (p-> p+[0, p[1]*(2*y+1)])(b(x+1, y
%p A274373       +1, 0, n-1))+`if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0)
%p A274373       +`if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))
%p A274373     end:
%p A274373 a:= n-> b(0$3, 2*n)[2]:
%p A274373 seq(a(n), n=0..30);
%t A274373 b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, {0, 0}, {1, 0}], Function[p, p + {0, p[[1]] (2y + 1)}][b[x + 1, y + 1, 0, n - 1]] + If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1], 0] + If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]];
%t A274373 a[n_] := b[0, 0, 0, 2 n][[2]];
%t A274373 a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 29 2020, after _Alois P. Heinz_ *)
%Y A274373 Cf. A230823, A274372.
%K A274373 nonn
%O A274373 0,3
%A A274373 _Alois P. Heinz_, Jun 19 2016