cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274380 The period 4 sequence of the iterated sum of deficient divisors function (A187793) starting at 34.

Original entry on oeis.org

34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48, 34, 54, 42, 48
Offset: 1

Views

Author

Timothy L. Tiffin, Jun 22 2016

Keywords

Comments

This sequence is generated in a similar way to aliquot sequences or sociable chains, which are generated by iterating the sum of proper divisors function (A001065). It appears to be one of two sequences of period (order, length) 4 that A187793 generates under iteration. The other one is A274340.
If sigma(N) is the sum of positive divisors of N, then:
a(n+1) = sigma(a(n)) if a(n) is a deficient number (A005100),
a(n+1) = sigma(a(n))-a(n) if a(n) is a primitive abundant number (A071395),
a(n+1) = sigma(a(n))-a(n)-m if a(n) is an abundant number with one proper divisor m that is either perfect (A275082) or abundant, and so forth.
This is used in the example below.
A284326 also generates this sequence under iteration. - Timothy L. Tiffin, Feb 22 2022

Examples

			a(1) = 34;
a(2) = sigma(34) = 54;
a(3) = sigma(54) - 18 - 6 = 42;
a(4) = sigma(42) - 42 - 6 = 48;
a(5) = sigma(48) - 48 - 24 - 12 - 6 = 34 = a(1);
  :
  :
		

Crossrefs

Programs

  • PARI
    Vec(2*x*(17 + 27*x + 21*x^2 + 24*x^3) / ((1 - x)*(1 + x)*(1 + x^2)) + O(x^80)) \\ Colin Barker, Jan 30 2020

Formula

a(n+4) = a(n).
G.f.: 2*x*(17 + 27*x + 21*x^2 + 24*x^3) / ((1 - x)*(1 + x)*(1 + x^2)). - Colin Barker, Jan 30 2020