This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274382 #35 Sep 08 2022 08:46:17 %S A274382 1,2,1,1,1,3,1,1,1,1,1,2,1,1,3,1,1,6,1,4,1,1,1,24,1,1,1,14,1,3,1,1,3, %T A274382 1,1,1,1,1,1,10,1,3,1,2,3,1,1,4,1,2,3,4,1,3,1,4,1,1,1,6,1,1,1,1,1,3,1, %U A274382 4,3,1,1,3,1,1,1,2,1,3,1,2,1,1,1,14,1,1 %N A274382 a(n) = gcd(n, n*(n+1)/2 - sigma(n)). %H A274382 Paolo P. Lava, <a href="/A274382/b274382.txt">Table of n, a(n) for n = 1..10000</a> %F A274382 a(n) = gcd(n, A000217(n)-A000203(n)). - _Felix Fröhlich_, Jun 23 2016 %F A274382 a(n) = gcd(n, antisigma(n)) = gcd(n, A024816(n)). - _Omar E. Pol_, Jun 29 2016 %e A274382 a(6) = 3 because 6*7/2 - sigma(6) = 21 - 12 = 9 and gcd(6,9) = 3. %p A274382 with(numtheory); P:=proc(q) local n; %p A274382 for n from 1 to q do print(gcd(n,n*(n+1)/2-sigma(n))); od; end: P(10^3); %t A274382 Table[GCD[n, n (n+1)/2 - DivisorSigma[1, n]], {n, 100}] (* _Vincenzo Librandi_, Jun 25 2016 *) %o A274382 (PARI) a(n) = gcd(n, n*(n+1)/2-sigma(n)) \\ _Felix Fröhlich_, Jun 23 2016 %o A274382 (Magma) [GCD(n, n*(n+1) div 2-SumOfDivisors(n)): n in [1..100]]; // _Vincenzo Librandi_, Jun 25 2016 %Y A274382 Cf. A009194, A024816. %K A274382 nonn,easy %O A274382 1,2 %A A274382 _Paolo P. Lava_, Jun 23 2016