This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274383 #35 Nov 13 2024 16:41:16 %S A274383 4,7,10,15,18,23,29,35,40,47,54,60,68,75,83,90,99,107,116,125,134,143, %T A274383 152,162,172,182,193,203,214,225,236,248,259,271,283,295,307,320,332, %U A274383 345,358,372,385,398,412,426,440,454,469,483,498,513,528,543,559,574,590,606,622,638,654,671,688,704 %N A274383 a(n) is the least m such that A008284(m,n+1) > A008284(m,n). %C A274383 A008284(m,n) is the number of partitions of the integer m into n parts; p(m,n) in the following. It is numerically and intuitively clear that for any fixed n, for sufficiently large m, p(m,n+1) > p(m,n). Moreover, from examining the table of p(m,n) for small values of n, it appears that for any fixed n, once it has occurred for some m that p(m,n+1) > p(m,n), then it holds for all larger m. However, I did not see a simple proof of this, nor could I easily find one on the net. Presuming it is true, then the m at which p(m,n+1) first overtakes p(m,n) is of intrinsic interest. %e A274383 a(1) = 4 since p(4,2) = 2, which is greater than p(4,1) = 1, whereas for any lesser integer, e.g. 3, p(3,2) <= p(3,1). %t A274383 t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, n - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]; Table[m = 1; While[t[m, n + 1] <= t[m, n], m++]; m, {n, 0, 50}] (* _Michael De Vlieger_, Jun 23 2016, after _Mats Granvik_ at A008284 *) %o A274383 (Python) %o A274383 element = 1 %o A274383 goal = 64 %o A274383 n = 1 %o A274383 p = [[]] %o A274383 while element <= goal: %o A274383 # fill in the n-th row of the table %o A274383 p.append([0]*(goal+2)) %o A274383 for k in range(1, min(n,goal+1)+1): %o A274383 if (k == 1) or (k == n): %o A274383 p[n][k] = 1 %o A274383 else: %o A274383 p[n][k] = p[n-1][k-1] + p[n-k][k] %o A274383 # see if we can increment element %o A274383 if p[n][element+1] > p[n][element]: %o A274383 print("p[{}][{}]={} and p[{}][{}]={} so a[{}] = {}".format( %o A274383 n,element,p[n][element],n,element+1,p[n][element+1],element,n)) %o A274383 element = element+1 %o A274383 n = n+1 %Y A274383 Cf. A008284. %K A274383 nonn %O A274383 1,1 %A A274383 _Glen Whitney_, Jun 23 2016