cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274390 Table of coefficients in the iterations of Euler's tree function (A000169), as read by antidiagonals.

This page as a plain text file.
%I A274390 #33 Jul 05 2016 13:02:16
%S A274390 1,1,0,1,2,0,1,4,9,0,1,6,30,64,0,1,8,63,332,625,0,1,10,108,948,4880,
%T A274390 7776,0,1,12,165,2056,18645,89742,117649,0,1,14,234,3800,50680,454158,
%U A274390 1986124,2097152,0,1,16,315,6324,112625,1537524,13221075,51471800,43046721,0,1,18,408,9772,219000,4090980,55494712,448434136,1530489744,1000000000,0,1,20,513,14288,387205,9266706,176238685,2325685632,17386204761,51395228090,25937424601,0,1,22,630,20016,637520,18704322,463975764,8793850560,111107380464,759123121050,1924687118684,743008370688,0,1,24,759,27100,993105,34617288,1067280319,26858490392,499217336145,5964692819140,36882981687519,79553145323940,23298085122481,0
%N A274390 Table of coefficients in the iterations of Euler's tree function (A000169), as read by antidiagonals.
%C A274390 See table A274391 for the coefficients in exp( T^n(x) ), n>=0, where T^n(x) is the e.g.f. of the n-th row of this table.
%H A274390 Paul D. Hanna, <a href="/A274390/b274390.txt">Table of n, a(n) for n = 0..1034 of rows 0..45 of the flattened table.</a>
%F A274390 Let T^n(x) denote the n-th iteration of Euler's tree function T(x), then the coefficients in T^n(x) form the n-th row of this table, and the functions satisfy:
%F A274390 (1) T^n(x) = x * exp( Sum_{i=1..n} T^i(x) ).
%F A274390 (2) T^n(x) = T^(n-1)(x) * exp( T^n(x) ).
%F A274390 (3) T^n(x) = T^(n+1)( x/exp(x) ).
%e A274390 This table begins:
%e A274390 1,  0,   0,     0,       0,        0,          0,            0, ...;
%e A274390 1,  2,   9,    64,     625,     7776,     117649,      2097152, ...;
%e A274390 1,  4,  30,   332,    4880,    89742,    1986124,     51471800, ...;
%e A274390 1,  6,  63,   948,   18645,   454158,   13221075,    448434136, ...;
%e A274390 1,  8, 108,  2056,   50680,  1537524,   55494712,   2325685632, ...;
%e A274390 1, 10, 165,  3800,  112625,  4090980,  176238685,   8793850560, ...;
%e A274390 1, 12, 234,  6324,  219000,  9266706,  463975764,  26858490392, ...;
%e A274390 1, 14, 315,  9772,  387205, 18704322, 1067280319,  70311813880, ...;
%e A274390 1, 16, 408, 14288,  637520, 34617288, 2217367600, 163802295616, ...;
%e A274390 1, 18, 513, 20016,  993105, 59879304, 4254311817, 348285415872, ...;
%e A274390 1, 20, 630, 27100, 1480000, 98110710, 7656893020, 688058734520, ...;
%e A274390 ...
%e A274390 where the e.g.f.s of the rows are iterations of T(x) and begin:
%e A274390 T^0(x) = x;
%e A274390 T^1(x) = T(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...;
%e A274390 T^2(x) = T(T(x)) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! + 89742*x^6/6! + 1986124*x^7/7! + 51471800*x^8/8! +...+ A207833(n)*x^n/n! +...;
%e A274390 T^3(x) = T(T(T(x))) = x + 6*x^2/2! + 63*x^3/3! + 948*x^4/4! + 18645*x^5/5! + 454158*x^6/6! + 13221075*x^7/7! + 448434136*x^8/8! +...+ A227278(n)*x^n/n! +...;
%e A274390 T^4(x) = T(T(T(T(x)))) = x + 8*x^2/2! + 108*x^3/3! + 2056*x^4/4! + 50680*x^5/5! + 1537524*x^6/6! + 55494712*x^7/7! + 2325685632*x^8/8! +...;
%e A274390 ...
%e A274390 where T^n(x)/exp( T^n(x) ) = T^n( x/exp(x) ) = T^(n-1)(x).
%e A274390 Also we have
%e A274390 T(x) = x*exp( T(x) );
%e A274390 T^2(x) = x*exp( T(x) + T^2(x) );
%e A274390 T^3(x) = x*exp( T(x) + T^2(x) + T^3(x) );
%e A274390 T^4(x) = x*exp( T(x) + T^2(x) + T^3(x) + T^4(x) ); ...
%o A274390 (PARI) {ITERATE(F,n,k) = my(G=x +x*O(x^k)); for(i=1,n,G=subst(G,x,F));G}
%o A274390 {T(n,k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(ITERATE(TREE,n,k),k)}
%o A274390 /* Print this table as a square array */
%o A274390 for(n=0,10,for(k=1,10,print1(T(n,k),", "));print(""))
%o A274390 /* Print this table as a flattened array */
%o A274390 for(n=0,12,for(k=1,n,print1(T(n-k,k),", "));)
%Y A274390 Cf. A274391, A000169, A207833, A227278; diagonals: A274389, A274392.
%Y A274390 Cf. A274570 (transforms diagonals).
%Y A274390 Cf. A274740 (same table, but read differently).
%K A274390 nonn,tabl
%O A274390 0,5
%A A274390 _Paul D. Hanna_, Jun 19 2016