cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274400 Decimal expansion of 'V', the value of a 4-dimensional iterated integral studied by David Broadhurst in connection with Quantum Field Theory (negated).

Original entry on oeis.org

0, 3, 9, 0, 1, 2, 7, 2, 6, 3, 6, 0, 1, 6, 7, 1, 6, 6, 0, 1, 7, 5, 6, 6, 9, 4, 1, 3, 5, 4, 5, 0, 0, 4, 6, 1, 7, 5, 7, 4, 7, 5, 8, 5, 7, 1, 3, 8, 6, 1, 3, 0, 9, 9, 0, 1, 4, 9, 3, 8, 9, 6, 7, 3, 9, 5, 4, 0, 3, 8, 9, 2, 7, 5, 0, 1, 8, 5, 6, 5, 4, 8, 7, 1, 8, 1, 2, 1, 8, 8, 1, 2, 8, 2, 8, 4, 2, 6, 1, 2, 8, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 20 2016

Keywords

Examples

			-0.0390127263601671660175669413545004617574758571386130990149389673954...
		

References

  • Jonathan Borwein and Peter Borwein, Experimental and Computational Mathematics: Selected Writings, Perfectly Scientific Press, 2010, p. 106.

Crossrefs

Cf. A255685 ('U' in Borwein & Borwein).

Programs

  • Mathematica
    digits = 101;
    v[k_] := ((-1)^k*((24*(k - 1)*(3*k - 4))/(3*k - 2)^3 + (8*(3*k*(3*k - 5) + 4))/(27*(k - 1)^3) + PolyGamma[2, (3*k)/2 - 1] - PolyGamma[2, (3*(k - 1))/2]))/(48*(k - 1)*(3*k - 4)*(3*k - 2));
    V = 3 Zeta[3]/8 - 1/2 + NSum[v[k], {k, 2, Infinity}, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]; Join[{0},
    RealDigits[V, 10, digits][[1]]]

Formula

V = Sum_{j>k>0} (-1)^j cos(2Pi k/3)/(j^3 k).
Equals 3 zeta(3)/8-1/2+Sum_{k>=2} ((-1)^k*((24*(k - 1)*(3*k - 4))/(3*k - 2)^3 + (8*(3*k*(3*k - 5) + 4))/(27*(k - 1)^3) + PolyGamma(2, (3*k)/2 - 1) - PolyGamma(2, (3*(k - 1))/2)))/(48*(k - 1)*(3*k - 4)*(3*k - 2)).