This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274404 #15 Mar 27 2021 08:07:46 %S A274404 1,1,2,5,1,14,6,42,28,3,132,120,28,1,429,495,180,20,1430,2002,990,195, %T A274404 10,4862,8008,5005,1430,165,4,16796,31824,24024,9009,1650,117,1,58786, %U A274404 125970,111384,51688,13013,1617,70,208012,497420,503880,278460,89180,16016,1386,35 %N A274404 Number T(n,k) of modified skew Dyck paths of semilength n with exactly k anti-down steps; triangle T(n,k), n>=0, 0<=k<=n-floor((1+sqrt(max(0,8n-7)))/2), read by rows. %C A274404 A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap. %H A274404 Alois P. Heinz, <a href="/A274404/b274404.txt">Rows n = 0..160, flattened</a> %F A274404 Sum_{k>0} k * T(n,k) = A274405(n). %e A274404 /\ %e A274404 \ \ %e A274404 T(3,1) = 1: / \ %e A274404 . %e A274404 Triangle T(n,k) begins: %e A274404 : 1; %e A274404 : 1; %e A274404 : 2; %e A274404 : 5, 1; %e A274404 : 14, 6; %e A274404 : 42, 28, 3; %e A274404 : 132, 120, 28, 1; %e A274404 : 429, 495, 180, 20; %e A274404 : 1430, 2002, 990, 195, 10; %e A274404 : 4862, 8008, 5005, 1430, 165, 4; %e A274404 : 16796, 31824, 24024, 9009, 1650, 117, 1; %p A274404 b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0, %p A274404 `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)+ %p A274404 `if`(t<>1 and x>0, b(x-1, y+1, 2, n-1)*z, 0)+ %p A274404 `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))) %p A274404 end: %p A274404 T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(0$3, 2*n)): %p A274404 seq(T(n), n=0..14); %t A274404 b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y > n, 0, %t A274404 If[n == y, If[t == 2, 0, 1], b[x + 1, y + 1, 0, n - 1] + %t A274404 If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1] z, 0] + %t A274404 If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]]]; %t A274404 T[n_] := CoefficientList[b[0, 0, 0, 2n], z]; %t A274404 T /@ Range[0, 14] // Flatten (* _Jean-François Alcover_, Mar 27 2021, after _Alois P. Heinz_ *) %Y A274404 Columns k=0-3 give: A000108, A002694(n-1), A074922(n-2), A232224(n-3). %Y A274404 Row sums give A230823. %Y A274404 Last elements of rows give A092392(n-1) for n>0. %Y A274404 Cf. A083920, A274405. %K A274404 nonn,tabf %O A274404 0,3 %A A274404 _Alois P. Heinz_, Jun 20 2016