This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274405 #11 Dec 29 2020 09:04:01 %S A274405 0,0,0,1,6,34,179,915,4607,22988,114090,564359,2785921,13735074, %T A274405 67665208,333211828,1640575047,8077199130,39770520844,195852723348, %U A274405 964689515033,4752800817185,23422061819883,115456855588378,569293729146929,2807864888917275 %N A274405 Number of anti-down steps in all modified skew Dyck paths of semilength n. %C A274405 A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap. %H A274405 Alois P. Heinz, <a href="/A274405/b274405.txt">Table of n, a(n) for n = 0..500</a> %F A274405 a(n) = Sum_{k>0} k * A274404(n,k). %F A274405 a(n) ~ c * 5^n / sqrt(n), where c = 0.0554525135364274199547478570703521322323... . - _Vaclav Kotesovec_, Jun 26 2016 %p A274405 b:= proc(x, y, t, n) option remember; `if`(y>n, 0, `if`(n=y, %p A274405 `if`(t=2, 0, [1, 0]), b(x+1, y+1, 0, n-1)+`if`(t<>1 %p A274405 and x>0, (p-> p+[0, p[1]])(b(x-1, y+1, 2, n-1)), 0)+ %p A274405 `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))) %p A274405 end: %p A274405 a:= n-> b(0$3, 2*n)[2]: %p A274405 seq(a(n), n=0..30); %t A274405 b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, {0, 0}, {1, 0}], b[x + 1, y + 1, 0, n - 1] + If[t != 1 && x > 0, Function[p, p + {0, p[[1]]}][b[x - 1, y + 1, 2, n - 1]], 0] + If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]]; %t A274405 a[n_] := b[0, 0, 0, 2 n][[2]]; %t A274405 a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 29 2020, after _Alois P. Heinz_ *) %Y A274405 Cf. A230823, A274404. %K A274405 nonn %O A274405 0,5 %A A274405 _Alois P. Heinz_, Jun 20 2016