cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274422 Numbers m such that there exists a j for which m = Sum_{k=1..j} (m mod k), where k runs through the largest j primes less than m.

Original entry on oeis.org

13, 17, 20, 23, 24, 34, 40, 82, 126, 200, 612, 1154, 1692, 2434, 2806, 3060, 3142, 4052, 4460, 4596, 5020, 5908, 6424, 7304, 7596, 8030, 8040, 9044, 11398, 12254, 12914, 13412, 13716, 16006, 16800, 18560, 22438, 23140, 24424, 24746, 25706, 28318, 29272, 30580
Offset: 1

Views

Author

Paolo P. Lava, Jun 21 2016

Keywords

Examples

			13 mod 11 + 13 mod 7 + 13 mod 5 + 13 mod 3 + 13 mod 2 = 2 + 6 + 3 + 1 + 1 = 13;
40 mod 37 + 40 mod 31 + 40 mod 29 + 40 mod 23 = 3 + 9 + 11 + 17 = 40.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local a,b,k,n; for n from 3 to q do a:=0; b:=prevprime(n);
    while n>a do a:=a+(n mod b); if b>2 then b:=prevprime(b); else break; fi; od;
    if n=a then print(n); fi; od; end: P(10^9);

A274424 Numbers k such that there exists an m for which k = Sum_{j=1..m} (k mod prime(j)).

Original entry on oeis.org

13, 19, 48, 63, 67, 76, 94, 99, 123, 141, 143, 150, 179, 193, 247, 249, 285, 339, 404, 445, 517, 693, 711, 798, 969, 982, 1054, 1138, 1233, 1245, 1257, 1262, 1364, 1524, 1531, 1569, 1613, 1694, 1701, 1743, 1745, 1928, 2018, 2070, 2114, 2224, 2339, 2461, 2770
Offset: 1

Views

Author

Paolo P. Lava, Jun 21 2016

Keywords

Examples

			48 mod 2 + 48 mod 3 + 48 mod 5 + 48 mod 7 + 48 mod 11 + 48 mod 13 + 48 mod 17 + 48 mod 19 + 48 mod 23 = 0 + 0 + 3 + 6 + 4 + 9 + 14 + 10 + 2 = 48, so 48 is a term.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local a,b,k,n; for n from 2 to q do a:=0; b:=2;
    while n>a do a:=a+(n mod b); b:=nextprime(b); od;
    if n=a then  print(n); fi; od; end: P(10^9);
Showing 1-2 of 2 results.