A274424 Numbers k such that there exists an m for which k = Sum_{j=1..m} (k mod prime(j)).
13, 19, 48, 63, 67, 76, 94, 99, 123, 141, 143, 150, 179, 193, 247, 249, 285, 339, 404, 445, 517, 693, 711, 798, 969, 982, 1054, 1138, 1233, 1245, 1257, 1262, 1364, 1524, 1531, 1569, 1613, 1694, 1701, 1743, 1745, 1928, 2018, 2070, 2114, 2224, 2339, 2461, 2770
Offset: 1
Examples
48 mod 2 + 48 mod 3 + 48 mod 5 + 48 mod 7 + 48 mod 11 + 48 mod 13 + 48 mod 17 + 48 mod 19 + 48 mod 23 = 0 + 0 + 3 + 6 + 4 + 9 + 14 + 10 + 2 = 48, so 48 is a term.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1500
- Paolo P. Lava, First 1500 terms with the number of the first primes
Programs
-
Maple
P:=proc(q) local a,b,k,n; for n from 2 to q do a:=0; b:=2; while n>a do a:=a+(n mod b); b:=nextprime(b); od; if n=a then print(n); fi; od; end: P(10^9);