cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274433 Products of two distinct tribonacci numbers > 1.

Original entry on oeis.org

15, 27, 45, 51, 85, 93, 153, 155, 171, 279, 285, 315, 513, 525, 527, 579, 945, 965, 969, 1065, 1737, 1767, 1775, 1785, 1959, 3195, 3255, 3265, 3281, 3603, 5877, 5983, 5985, 6005, 6035, 6627, 10809, 11001, 11005, 11045, 11101, 12189, 19881, 20235, 20243
Offset: 1

Views

Author

Clark Kimberling, Jun 22 2016

Keywords

Comments

Are these unique among all products of distinct tribonacci numbers (A000213)? (See A274432.)

Examples

			The tribonacci numbers > 1 are 3,5,9,17,31,57,..., so that the binary products in increasing order are 15, 27,45, 51, 85, ...
		

Crossrefs

Programs

  • Mathematica
    r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = r[n - 1] + r[n - 2] + r[n - 3];
    s = {1}; z = 60; f = Map[r, Range[z]]; Take[f, 20]
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    Take[s, 2 z]  (* A274432 *)
    infQ[n_] := MemberQ[f, n];
    ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
    Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &, Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 300}];
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274433 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274434 *)
    (* Peter J. C. Moses, Jun 17 2016 *)