This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274434 #4 Jun 22 2016 23:16:47 %S A274434 135,255,459,465,765,837,855,1395,1539,1575,1581,2565,2635,2835,2895, %T A274434 2907,4725,4743,4845,5211,5301,5325,5355,8685,8721,8835,8925,9585, %U A274434 9765,9795,9843,15903,15975,16065,16275,16405,17631,17949,17955,18015,18105,29295 %N A274434 Products of three distinct tribonacci numbers > 1. %C A274434 Are these unique among all products of distinct tribonacci numbers (A000213)? (See A274432.) %e A274434 The tribonacci numbers > 1 are 3,5,9,17,31,57,..., so that the trinary products in increasing order are 135, 255, 459, 465, 765,... %t A274434 r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = r[n - 1] + r[n - 2] + r[n - 3]; %t A274434 s = {1}; z = 60; f = Map[r, Range[z]]; Take[f, 20] %t A274434 Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; %t A274434 Take[s, 2 z] (* A274432 *) %t A274434 infQ[n_] := MemberQ[f, n]; %t A274434 ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[ %t A274434 Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &, Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 300}]; %t A274434 Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274433 *) %t A274434 Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274434 *) %t A274434 (* _Peter J. C. Moses_, Jun 17 2016 *) %Y A274434 Cf. A000213, A274432, A274433. %K A274434 nonn,easy %O A274434 1,1 %A A274434 _Clark Kimberling_, Jun 22 2016