cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274441 Decimal expansion of Q(3), value of one of five integrals related to Quantum Field Theory (see the paper by David Broadhurst).

This page as a plain text file.
%I A274441 #14 Feb 16 2025 08:33:36
%S A274441 2,0,3,4,3,6,8,9,7,1,3,1,7,2,0,4,4,4,7,1,5,4,1,0,0,4,8,2,3,2,7,0,6,9,
%T A274441 9,8,1,9,7,6,9,5,0,4,7,3,6,5,1,2,8,6,4,5,7,0,8,4,4,3,7,2,3,9,3,8,0,6,
%U A274441 5,7,3,4,1,9,6,4,9,6,6,2,4,5,6,2,2,3,9,0,3,6,7,8,3,6,5,5,0,1,4,2,5
%N A274441 Decimal expansion of Q(3), value of one of five integrals related to Quantum Field Theory (see the paper by David Broadhurst).
%H A274441 David J. Broadhurst, <a href="http://arxiv.org/abs/hep-th/9803091">Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity</a>, arXiv:hep-th/9803091, 1998, p. 12.
%H A274441 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/ClausensIntegral.html">Clausen's Integral</a>
%F A274441 Q(n) = Integral_{0..inf} arccosh((x+2)/2)^2 log((x+1)/x)/(x+n) dx.
%F A274441 Computation is done using the analytical form given by David Broadhurst:
%F A274441 Q(3) = -50/9  Cl2(Pi/3)^2+596/81 zeta(4)-16/9 U+32/3 V, where Cl_2 is the Clausen integral, U A255685 and V A274400.
%e A274441 2.03436897131720444715410048232706998197695047365128645708443723938...
%t A274441 digits = 101;
%t A274441 Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]);
%t A274441 U = A255685 = Pi^4/180 + (Pi^2/12)*Log[2]^2 - (1/12)*Log[2]^4 - 2*PolyLog[4, 1/2];
%t A274441 v[k_] := ((-1)^k*((24*(k - 1)*(3*k - 4))/(3*k - 2)^3 + (8*(3*k*(3*k - 5) + 4))/(27*(k - 1)^3) + PolyGamma[2, (3*k)/2 - 1] - PolyGamma[2, (3*(k - 1))/2]))/(48*(k - 1)*(3*k - 4)*(3*k - 2));
%t A274441 V = A274400 = 3 Zeta[3]/8 - 1/2 + NSum[v[k], {k, 2, Infinity}, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"];
%t A274441 Q[3] = -50/9  Cl2[Pi/3]^2 + 596/81 Zeta[4] - 16/9 U + 32/3 V;
%t A274441 RealDigits[N[Q[3], digits] // Chop][[1]]
%o A274441 (PARI)
%o A274441 Q(n) = intnum(x=0, oo, acosh((x+2)/2)^2 * log((x+1)/x)/(x+n));
%o A274441 Q(3) \\ _Gheorghe Coserea_, Sep 30 2018
%o A274441 (PARI)
%o A274441 clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
%o A274441 polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
%o A274441 u31=Pi^4/180 + (Pi^2/12)*log(2)^2  - (1/12)*log(2)^4 - 2*polylog(4, 1/2);
%o A274441 v31=3*zeta(3)/8 - 1/2 + sumalt(k=2, (-1)^k*((24*(k-1)*(3*k-4))/(3*k-2)^3 + (8*(3*k*(3*k-5)+4))/(27*(k-1)^3) + polygamma(2, (3*k)/2-1) - polygamma(2, (3*(k-1))/2))/(48*(k-1)*(3*k-4)*(3*k-2)));
%o A274441 -50/9*clausen(2, Pi/3)^2 + 596/81*zeta(4) - 16/9*u31 + 32/3*v31 \\ _Gheorghe Coserea_, Sep 30 2018
%Y A274441 Cf. A274438 (Q(0)), A274439 (Q(1)), A274440 (Q(2)), A274442 (Q(4)).
%K A274441 nonn,cons
%O A274441 1,1
%A A274441 _Jean-François Alcover_, Jun 23 2016