cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274442 Decimal expansion of Q(4), value of one of five integrals related to Quantum Field Theory (see the paper by David Broadhurst).

This page as a plain text file.
%I A274442 #15 Feb 16 2025 08:33:36
%S A274442 1,8,7,4,4,7,1,6,6,9,4,9,0,0,8,2,6,0,1,1,8,0,9,5,0,9,9,9,4,8,9,6,8,0,
%T A274442 2,9,7,0,5,7,3,9,7,6,5,8,9,2,0,3,7,9,5,3,4,8,0,7,6,9,8,4,5,1,1,9,0,4,
%U A274442 5,2,6,4,7,5,6,8,0,0,7,0,0,3,7,5,8,4,7,0,6,5,3,3,9,9,9,8,9,8,0,4,3
%N A274442 Decimal expansion of Q(4), value of one of five integrals related to Quantum Field Theory (see the paper by David Broadhurst).
%H A274442 David J. Broadhurst, <a href="http://arxiv.org/abs/hep-th/9803091">Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity</a>, arXiv:hep-th/9803091, 1998, p. 12.
%H A274442 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/ClausensIntegral.html">Clausen's Integral</a>
%F A274442 Q(n) = Integral_{0..inf} arccosh((x+2)/2)^2 log((x+1)/x)/(x+n) dx.
%F A274442 Computation is done using the analytical form given by David Broadhurst:
%F A274442 Q(4) = 125/54 zeta(4) + 8 U - 8 V, where U is A255685 and V A274400.
%e A274442 1.87447166949008260118095099948968029705739765892037953480769845119...
%t A274442 digits = 101;
%t A274442 U = A255685 = Pi^4/180 + (Pi^2/12)*Log[2]^2 - (1/12)*Log[2]^4 - 2*PolyLog[4, 1/2];
%t A274442 v[k_] := ((-1)^k*((24*(k - 1)*(3*k - 4))/(3*k - 2)^3 + (8*(3*k*(3*k - 5) + 4))/(27*(k - 1)^3) + PolyGamma[2, (3*k)/2 - 1] - PolyGamma[2, (3*(k - 1))/2]))/(48*(k - 1)*(3*k - 4)*(3*k - 2));
%t A274442 V = A274400 = 3 Zeta[3]/8 - 1/2 + NSum[v[k], {k, 2, Infinity}, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"];
%t A274442 Q[4] = 125/54 Zeta[4] + 8 U - 8 V;
%t A274442 RealDigits[Q[4], 10, digits][[1]]
%o A274442 (PARI)
%o A274442 Q(n) = intnum(x=0, oo, acosh((x+2)/2)^2 * log((x+1)/x)/(x+n));
%o A274442 Q(4) \\ _Gheorghe Coserea_, Sep 30 2018
%o A274442 (PARI)
%o A274442 polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
%o A274442 u31=Pi^4/180 + (Pi^2/12)*log(2)^2  - (1/12)*log(2)^4 - 2*polylog(4, 1/2);
%o A274442 v31=3*zeta(3)/8 - 1/2 + sumalt(k=2, (-1)^k*((24*(k-1)*(3*k-4))/(3*k-2)^3 + (8*(3*k*(3*k-5)+4))/(27*(k-1)^3) + polygamma(2, (3*k)/2-1) - polygamma(2, (3*(k-1))/2))/(48*(k-1)*(3*k-4)*(3*k-2)));
%o A274442 125/54*zeta(4) + 8*u31 - 8*v31 \\ _Gheorghe Coserea_, Sep 30 2018
%Y A274442 Cf. A274438 (Q(0)), A274439 (Q(1)), A274440 (Q(2)), A274441 (Q(3)).
%K A274442 nonn,cons
%O A274442 1,2
%A A274442 _Jean-François Alcover_, Jun 23 2016