cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274468 The length of the initial uninterrupted number of tau numbers in the chain defined by repeated subtraction of the number of divisors, starting with the n-th tau number.

This page as a plain text file.
%I A274468 #20 Aug 12 2023 04:39:48
%S A274468 1,1,1,1,1,2,1,1,1,1,1,2,1,3,2,4,5,5,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,
%T A274468 2,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,1,2,2,2,3,1,1,1,2,1,1,1,1,1,1,1,1,1,
%U A274468 1,1,1,1,2,1,1,2,1,1,1,1,1,1,2,2,1,2,2,3,1,2,1,1,1,1,1
%N A274468 The length of the initial uninterrupted number of tau numbers in the chain defined by repeated subtraction of the number of divisors, starting with the n-th tau number.
%C A274468 This is the persistence of the n-th tau number staying a tau number under the map x->A049820(x).
%C A274468 Records: 1, 2,...,8 occur at n=1, 6, 14, 16, 17, 7393, 7394, 8064,...
%H A274468 C. Meller, <a href="http://numbersandmath.blogspot.de/2016/06/tau-numbers.html">Tau numbers</a>, June 2016.
%e A274468 a(196)=4 because the 196th tau number is 2016. Subtracting tau(2016)=36 gives 1980, which is a tau number. Subtracting tau(1980)=36 gives 1944, which is a tau number. Subtracting tau(1944)=24 gives 1920, which is a tau number. Subtracting tau(1920)=32 gives 1888 which is not a tau number. The length of the chain 2016->1980->1944->1920 is 4.
%p A274468 isA033950 := proc(n)
%p A274468     if n <= 0 then
%p A274468         false;
%p A274468     elif n = 1 then
%p A274468         true;
%p A274468     else
%p A274468         modp(n, numtheory[tau](n)) = 0 ;
%p A274468     end if;
%p A274468 end proc:
%p A274468 A274468 := proc(n)
%p A274468     option remember;
%p A274468     local a, t ;
%p A274468     t := A033950(n) ;
%p A274468     a := 1 ;
%p A274468     while true do
%p A274468         t := A049820(t) ;
%p A274468         if isA033950(t) then
%p A274468             a := a+1 ;
%p A274468         else
%p A274468             break;
%p A274468         end if;
%p A274468     end do:
%p A274468     a ;
%p A274468 end proc:
%t A274468 isA033950[n_] := Which[n <= 0, False, n == 1, True, True, IntegerQ[ n/DivisorSigma[0, n]]];
%t A274468 A033950[n_] := A033950[n] = Module[{k}, If[n == 1, 1, For[k = A033950[n-1] + 1, True, k++, If[IntegerQ[k/DivisorSigma[0, k]], Return[k]]]]];
%t A274468 A274468[n_] := A274468[n] = Module[{a, t}, t = A033950[n]; a = 1; While[ True, t = t-DivisorSigma[0, t]; If[isA033950[t], a++, Break[]]]; a];
%t A274468 Table[A274468[n], {n, 1, 100}] (* _Jean-François Alcover_, Aug 11 2023, after _R. J. Mathar_ *)
%Y A274468 Cf. A033950, A049820.
%K A274468 nonn
%O A274468 1,6
%A A274468 _R. J. Mathar_, Jun 24 2016