cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A274491 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k horizontal segments of length 1 (n>=2, k>=0). By a horizontal segment of length 1 we mean a horizontal step that is not adjacent to any other horizontal step.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 3, 5, 4, 1, 6, 13, 9, 7, 13, 28, 32, 18, 6, 27, 68, 88, 58, 32, 2, 57, 166, 228, 207, 102, 34, 123, 394, 623, 621, 380, 166, 20, 267, 943, 1668, 1812, 1380, 630, 200, 5, 584, 2269, 4366, 5348, 4476, 2540, 967, 155
Offset: 2

Views

Author

Emeric Deutsch and Sergi Elizalde, Jun 27 2016

Keywords

Comments

Sum of entries in row n = A082582(n).
T(n,0) = A274493(n).
Sum(k*T(n,k), k>=0) = A274492(n).

Examples

			Row 4 is 2,1,2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3]  and the corresponding pictures give the values 0,2,2,0,1 for the number of horizontal segments of length 1.
Triangle starts
0,1;
1,1;
2,1,2;
3,5,4,1;
6,13,9,7;
		

Crossrefs

Programs

  • Maple
    a:=z*(t*z-t-z): b:=1-2*z+z^2-2*z^3-2*t*z^2+2*t*z^3: c:=z^2*(t*z-t-z): eq := a*G^2+b*G+c=0: g:=RootOf(eq,G): gser:=simplify(series(g,z=0,22)): for n from 2 to 18 do P[n]:= sort(coeff(gser,z,n)) end do: for n from 2 to 18 do seq(coeff(P[n],t,j),j=0..degree(P[n])) end do; # yields sequence in triangular form
  • Mathematica
    nmax = 18;
    a = z (t z - t - z);
    b = 1 - 2z + z^2 - 2z^3 - 2t z^2 + 2t z^3;
    c = z^2 (t z - t - z);
    g = (-b + Sqrt[b^2 - 4 a c])/(2 a);
    gser = g + O[z]^(nmax+1);
    Do[Print["n = ", n]; P[n] = SeriesCoefficient[gser, {z, 0, n}], {n, 2, nmax} ];
    Table[CoefficientList[P[n], t], {n, 2, nmax}] // Flatten (* Jean-François Alcover, Jul 24 2018, from Maple *)

Formula

G.f.: G=G(t,z), where z marks semiperimeter and t marks horizontal segments of length 1, satisfies aG^2 + bG + c = 0, where a = z(tz-t-z), b=1-2z+z^2 - 2z^3 - 2tz^2 + 2tz^3, c=z^2(tz-t-z).
Showing 1-1 of 1 results.