cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274495 The length of the longest initial sequence of the form UHUH..., summed over all bargraphs having semiperimeter n (n>=2).

This page as a plain text file.
%I A274495 #22 Nov 19 2024 00:42:23
%S A274495 2,3,9,23,62,171,482,1384,4036,11924,35619,107407,326521,999675,
%T A274495 3079634,9539366,29693294,92831327,291366477,917765199,2900217452,
%U A274495 9192097510,29213057684,93073003438,297215560553,951144390092,3049877146281,9797605279905
%N A274495 The length of the longest initial sequence of the form UHUH..., summed over all bargraphs having semiperimeter n (n>=2).
%H A274495 M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112.
%H A274495 Emeric Deutsch, S Elizalde, <a href="http://arxiv.org/abs/1609.00088">Statistics on bargraphs viewed as cornerless Motzkin paths</a>, arXiv preprint arXiv:1609.00088, 2016
%F A274495 G.f.: g(z) = ((1-z)*(1-4*z^2-3*z^3-2*z^4)-(1+z-z^2-2*z^3)*Q)/(2*z*(1-z)), where Q = sqrt((1-z)*(1-3*z-z^2-z^3)).
%F A274495 a(n) = Sum_{k>=1} k*A274494(n,k).
%F A274495 D-finite with recurrence -(n+1)*(19*n-44)*a(n) +n*(43*n-65)*a(n-1) +2*(47*n^2-289*n+342)*a(n-2) +2*(-33*n^2+170*n-61)*a(n-3) +(-19*n^2+87*n+22)*a(n-4) -(33*n-31)*(n-8)*a(n-5)=0. - _R. J. Mathar_, Jul 22 2022
%e A274495 a(4) = 9 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that the sum of the lengths of their longest initial sequence of the form UHUH... is 2+4+1+1+1.
%p A274495 Q := sqrt((1-z)*(1-3*z-z^2-z^3)): g := (((1-z)*(1-4*z^2-3*z^3-2*z^4)-(1+z-z^2-2*z^3)*Q)*(1/2))/(z*(1-z)): gser := series(g, z = 0, 38): seq(coeff(gser, z, n), n = 2 .. 34);
%t A274495 terms = 28;
%t A274495 g[z_] = (((1-z)(1 - 4z^2 - 3z^3 - 2z^4) - (1 + z - z^2 - 2z^3)*Q)(1/2))/(z (1-z)) /. Q -> Sqrt[(1-z)(1 - 3z - z^2 - z^3)];
%t A274495 Drop[CoefficientList[g[z] + O[z]^(terms+2), z], 2] (* _Jean-François Alcover_, Aug 07 2018 *)
%Y A274495 Cf. A082582, A274494.
%K A274495 nonn
%O A274495 2,1
%A A274495 _Emeric Deutsch_, _Sergi Elizalde_, Aug 26 2016