cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274497 Sum of the degrees of asymmetry of all binary words of length n.

This page as a plain text file.
%I A274497 #23 Jul 08 2024 21:44:49
%S A274497 0,0,2,4,16,32,96,192,512,1024,2560,5120,12288,24576,57344,114688,
%T A274497 262144,524288,1179648,2359296,5242880,10485760,23068672,46137344,
%U A274497 100663296,201326592,436207616,872415232,1879048192,3758096384,8053063680
%N A274497 Sum of the degrees of asymmetry of all binary words of length n.
%C A274497 The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
%C A274497 A sequence is palindromic if and only if its degree of asymmetry is 0.
%H A274497 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,-8).
%F A274497 a(n) = (1/8)*(2n - 1 + (-1)^n)*2^n.
%F A274497 a(n) = Sum_{k>=0} k*A274496(n,k).
%F A274497 From _Alois P. Heinz_, Jul 27 2016: (Start)
%F A274497 a(n) = 2^(n-1) * A004526(n) = 2^(n-1)*floor(n/2).
%F A274497 a(n) = 2 * A134353(n-2) for n>=2. (End)
%F A274497 From _Chai Wah Wu_, Dec 27 2018: (Start)
%F A274497 a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) for n > 2.
%F A274497 G.f.: 2*x^2/((2*x - 1)^2*(2*x + 1)). (End)
%e A274497 a(3) = 4 because the binary words 000, 001, 010, 100, 011, 101, 110, 111 have degrees of asymmetry 0, 1, 0, 1, 1, 0, 1, 0, respectively.
%p A274497 a:= proc(n) options operator, arrow: (1/8)*(2*n-1+(-1)^n)*2^n end proc: seq(a(n), n = 0 .. 30);
%t A274497 LinearRecurrence[{2, 4, -8}, {0, 0, 2}, 31] (* _Jean-François Alcover_, Nov 16 2022 *)
%o A274497 (PARI) a(n)=(2*n-1+(-1)^n)*2^n/8 \\ _Charles R Greathouse IV_, Jul 08 2024
%Y A274497 Cf. A004526, A134353, A274496, A274498, A274499.
%K A274497 nonn,easy
%O A274497 0,3
%A A274497 _Emeric Deutsch_, Jul 27 2016