cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274499 Sum of the degrees of asymmetry of all ternary words of length n.

This page as a plain text file.
%I A274499 #14 Sep 09 2024 10:46:51
%S A274499 0,0,6,18,108,324,1458,4374,17496,52488,196830,590490,2125764,6377292,
%T A274499 22320522,66961566,229582512,688747536,2324522934,6973568802,
%U A274499 23245229340,69735688020,230127770466,690383311398,2259436291848,6778308875544,22029503845518,66088511536554
%N A274499 Sum of the degrees of asymmetry of all ternary words of length n.
%C A274499 The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
%C A274499 A sequence is palindromic if and only if its degree of asymmetry is 0.
%H A274499 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,9,-27).
%F A274499 a(n) = (1/6)*(2n - 1 + (-1)^n)*3^n.
%F A274499 a(n) = Sum(k*A274498(n,k), k>=0).
%F A274499 From _Chai Wah Wu_, Dec 27 2018: (Start)
%F A274499 a(n) = 3*a(n-1) + 9*a(n-2) - 27*a(n-3) for n > 2.
%F A274499 G.f.: 6*x^2/((3*x - 1)^2*(3*x + 1)). (End)
%e A274499 a(2) = 6 because the ternary words 00, 01, 02, 10, 11, 12, 20, 21, 22 have degrees of asymmetry 0, 1, 1, 1, 0, 1, 1, 1, 0, respectively.
%p A274499 a := proc (n) options operator, arrow: (1/6)*(2*n-1+(-1)^n)*3^n end proc: seq(a(n), n = 0 .. 30);
%t A274499 LinearRecurrence[{3, 9, -27}, {0, 0, 6}, 28] (* _Jean-François Alcover_, Sep 09 2024 *)
%Y A274499 Cf. A274496, A274497, A274498.
%K A274499 nonn,easy
%O A274499 0,3
%A A274499 _Emeric Deutsch_, Jul 27 2016