cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274502 a(n) = 90*binomial(n-1,7) + 9*binomial(n-1,6).

This page as a plain text file.
%I A274502 #18 Sep 08 2022 08:46:17
%S A274502 0,0,9,153,972,3996,12690,33858,79596,169884,335907,624195,1101672,
%T A274502 1861704,3031236,4779108,7325640,10953576,16020477,22972653,32360724,
%U A274502 44856900,61274070,82586790,109954260,144745380,188565975,243288279,311082768,394452432
%N A274502 a(n) = 90*binomial(n-1,7) + 9*binomial(n-1,6).
%H A274502 Vincenzo Librandi, <a href="/A274502/b274502.txt">Table of n, a(n) for n = 5..1000</a>
%H A274502 Q. T. Bach, R. Paudyal, J. B. Remmel, <a href="http://arxiv.org/abs/1510.04310">A Fibonacci analogue of Stirling numbers</a>, arXiv preprint arXiv:1510.04310 [math.CO], 2015 (page 25).
%H A274502 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).
%F A274502 G.f.: x^7*(9 + 81*x)/(1-x)^8.
%F A274502 a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>11.
%F A274502 a(n) = (n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(10*n-63)/560. - _Wesley Ivan Hurt_, Jun 25 2016
%p A274502 A274502:=n->90*binomial(n-1,7) + 9*binomial(n-1,6): seq(A274502(n), n=5..50); # _Wesley Ivan Hurt_, Jun 25 2016
%t A274502 Table[90 Binomial[n-1, 7] + 9 Binomial[n-1, 6], {n, 5, 40}]
%t A274502 LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,0,9,153,972,3996,12690,33858},30] (* _Harvey P. Dale_, Nov 01 2019 *)
%o A274502 (Magma) [90*Binomial(n-1,7) + 9*Binomial(n-1,6): n in [5..40]];
%o A274502 (PARI) concat([0, 0], Vec(x^7*(9 + 81*x)/(1-x)^8 + O(x^100))) \\ _Altug Alkan_, Jun 26 2016
%Y A274502 Cf. A274501.
%K A274502 nonn,easy
%O A274502 5,3
%A A274502 _Vincenzo Librandi_, Jun 25 2016