A274524 Numbers n such that both ror(n) and rol(n) are squares, where ror(x)=A038572(x) is x rotated one binary place to the right, rol(x)=A006257(x) is x rotated one binary place to the left.
1, 2, 8, 32, 128, 512, 1568, 2048, 2312, 2592, 2888, 8192, 16928, 32768, 131072, 139392, 250632, 524288, 549152, 566048, 672800, 924800, 963272, 1318688, 2097152, 8388608, 8520192, 8769672, 9005768, 12261152, 13582472, 15635232, 33554432, 134217728, 136059008, 136587392
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
F:= proc(d) local v,R,X; v:= 2^(d+1)-1; R:= select(t-> t^2 < v,numtheory:-divisors(v)); op(select(t -> t >= (v+1)/2 and t < v+1, map(t -> (t+ v/t)^2/8, R))); end proc: sort(convert({1,seq(F(i),i=1..50)},list)); # Robert Israel, Jul 13 2016
-
Mathematica
Select[Range[10^6], Times @ Boole@ {IntegerQ@ Sqrt@ FromDigits[RotateRight@ #, 2], IntegerQ@ Sqrt@ FromDigits[RotateLeft@ #, 2]} &@ IntegerDigits[#, 2] == 1 &] (* Michael De Vlieger, Jun 29 2016 *)
Comments