A274528 Square array read by antidiagonals upwards: T(n,k) = A269526(n+1,k+1) - 1, n>=0, k>=0.
0, 1, 2, 2, 3, 1, 3, 0, 4, 5, 4, 1, 5, 0, 3, 5, 6, 2, 1, 7, 4, 6, 7, 0, 4, 8, 2, 9, 7, 4, 8, 3, 0, 6, 5, 10, 8, 5, 3, 6, 1, 7, 4, 11, 12, 9, 10, 6, 2, 4, 5, 8, 3, 13, 7, 10, 11, 7, 8, 5, 9, 2, 6, 14, 15, 13, 11, 8, 12, 9, 10, 13, 3, 14, 15, 16, 6, 17, 12, 9, 13, 10, 2, 3, 7, 15, 8, 5, 11, 14, 6
Offset: 0
Examples
The corner of the square array begins: 0, 2, 1, 5, 3, 4, 9, 10, 12, 7, 13, 17, 1, 3, 4, 0, 7, 2, 5, 11, 13, 15, 6, 2, 0, 5, 1, 8, 6, 4, 3, 14, 16, 3, 1, 2, 4, 0, 7, 8, 6, 15, 4, 6, 0, 3, 1, 5, 2, 14, 5, 7, 8, 6, 4, 9, 3, 6, 4, 3, 2, 5, 13, 7, 5, 6, 8, 10, 8, 10, 7, 9, 9, 11, 12, 10, 8, 11,
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Rémy Sigrist, Colored illustration of T(n, k) for n = 0..499 and k = 0..499 (where the color is function of T(n, k))
- N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
Crossrefs
Programs
-
Maple
# From N. J. A. Sloane, Jul 30 2018, based on Heinz's program in A269526 A:= proc(n, k) option remember; local m, s; if n=1 and k=1 then 0 else s:= {seq(A(i, k), i=1..n-1), seq(A(n, j), j=1..k-1), seq(A(n-t, k-t), t=1..min(n, k)-1), seq(A(n+j, k-j), j=1..k-1)}; for m from 0 while m in s do od; m fi end: [seq(seq(A(1+d-k, k), k=1..d), d=1..12)];
-
Mathematica
A[n_, k_] := A[n, k] = Module[{m, s}, If[n==1 && k==1, 0, s = Join[Table[ A[i, k], {i, 1, n-1}], Table[A[n, j], {j, 1, k-1}], Table[A[n-t, k-t], {t, 1, Min[n, k] - 1}], Table[A[n+j, k-j], {j, 1, k-1}]]; For[m = 0, MemberQ[s, m], m++]; m]]; Table[A[d-k+1, k], {d, 1, 13}, {k, 1, d}] // Flatten (* Jean-François Alcover, May 03 2019, from Maple *)
Comments