This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274532 #17 Apr 01 2017 19:43:24 %S A274532 1,1,3,1,5,1,3,7,1,9,1,3,4,13,1,13,1,3,7,15,1,5,19,1,3,10,17,1,21,1,3, %T A274532 4,5,11,28,1,25,1,3,16,25,1,5,7,41,1,3,7,15,31,1,33,1,3,4,13,14,47,1, %U A274532 37,1,3,7,7,25,39,1,5,13,53,1,3,28,41,1,45,1,3,4,5,11,12,22,61,1,9,61,1,3,34,49,1,5,19,65 %N A274532 Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th antidiagonal of the absolute difference table of the divisors of n. %C A274532 If n is prime then row n contains only two terms: 1 and 2*n-1. %C A274532 Row 2^k gives the first k+1 positive terms of A000225, k >= 0. %C A274532 Note that this sequence is not the absolute values of A273262. %C A274532 First differs from A273262 at a(41). %e A274532 Triangle begins: %e A274532 1; %e A274532 1, 3; %e A274532 1, 5; %e A274532 1, 3, 7; %e A274532 1, 9; %e A274532 1, 3, 4, 13; %e A274532 1, 13; %e A274532 1, 3, 7, 15; %e A274532 1, 5, 19; %e A274532 1, 3, 10, 17; %e A274532 1, 21; %e A274532 1, 3, 4, 5, 11, 28; %e A274532 1, 25; %e A274532 1, 3, 16, 25; %e A274532 1, 5, 7, 41; %e A274532 1, 3, 7, 15, 31; %e A274532 1, 33; %e A274532 1, 3, 4, 13, 14, 47; %e A274532 1, 37; %e A274532 1, 3, 7, 7, 25, 39; %e A274532 1, 5, 13, 53; %e A274532 1, 3, 28, 41; %e A274532 1, 45; %e A274532 1, 3, 4, 5, 11, 12, 22, 61; %e A274532 1, 9, 61; %e A274532 1, 3, 34, 49; %e A274532 1, 5, 19, 65; %e A274532 ... %e A274532 For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the absolute difference triangle of the divisors is %e A274532 1, 2, 3, 6, 9, 18; %e A274532 1, 1, 3, 3, 9; %e A274532 0, 2, 0, 6; %e A274532 2, 2, 6; %e A274532 0, 4; %e A274532 4; %e A274532 The antidiagonal sums give [1, 3, 4, 13, 14, 47] which is also the 18th row of the irregular triangle. %t A274532 Table[Map[Total, Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}], {1}] &@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 27}] // Flatten (* _Michael De Vlieger_, Jun 27 2016 *) %Y A274532 Row lengths give A000005. Column 1 is A000012. Row sums give A187215. %Y A274532 Cf. A000225, A187203, A272121, A273132, A273135, A273262, A274531. %K A274532 nonn,tabf %O A274532 1,3 %A A274532 _Omar E. Pol_, Jun 27 2016