This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274533 #18 Aug 31 2021 02:43:08 %S A274533 1,2,2,3,3,3,4,4,5,5,4,5,6,6,7,7,4,6,8,8,7,9,9,4,7,10,10,11,11,4,6,8, %T A274533 10,12,12,13,13,8,9,14,14,11,13,15,15,5,8,12,16,16,17,17,8,11,12,15, %U A274533 18,18,19,19,7,10,10,15,20,20,13,17,21,21,16,13,22,22,23,23,6,7,10,12,16,20,24,24,21,25,25 %N A274533 Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th column of the absolute difference table of the divisors of n. %C A274533 If n is prime then row n is [n, n]. %C A274533 It appears that the last two terms of the n-th row are [n, n], n > 1. %C A274533 Note that this sequence is not the absolute values of A273263. %C A274533 First differs from A273263 at a(38). %e A274533 Triangle begins: %e A274533 1; %e A274533 2, 2; %e A274533 3, 3; %e A274533 3, 4, 4; %e A274533 5, 5; %e A274533 4, 5, 6, 6; %e A274533 7, 7; %e A274533 4, 6, 8, 8; %e A274533 7, 9, 9; %e A274533 4, 7, 10, 10; %e A274533 11, 11; %e A274533 4, 6, 8, 10, 12, 12; %e A274533 13, 13; %e A274533 8, 9, 14, 14; %e A274533 11, 13, 15, 15; %e A274533 5, 8, 12, 16, 16; %e A274533 17, 17; %e A274533 8, 11, 12, 15, 18, 18; %e A274533 19, 19; %e A274533 7, 10, 10, 15, 20, 20; %e A274533 13, 17, 21, 21; %e A274533 16, 13, 22, 22; %e A274533 23, 23; %e A274533 6, 7, 10, 12, 16, 20, 24, 24; %e A274533 21, 25, 25; %e A274533 20, 15, 26, 26; %e A274533 ... %e A274533 For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the absolute difference triangle of the divisors is %e A274533 1, 2, 3, 6, 9, 18; %e A274533 1, 1, 3, 3, 9; %e A274533 0, 2, 0, 6; %e A274533 2, 2, 6; %e A274533 0, 4; %e A274533 4; %e A274533 The column sums give [8, 11, 12, 15, 18, 18] which is also the 18th row of the irregular triangle. %t A274533 Table[Total /@ Table[#[[m - k + 1, -k]], {m, Length@ #, 1, -1}, {k, m}] &@ NestWhileList[Abs@ Differences@ # &, Divisors@ n, Length@ # > 1 &], {n, 25}] // Flatten (* _Michael De Vlieger_, Jun 29 2016 *) %Y A274533 Row lengths give A000005. Right border gives A000027. Row sums give A187215. %Y A274533 Cf. A187203, A272121, A273132, A273104, A273137, A273263, A274531, A274532. %K A274533 nonn,tabf %O A274533 1,2 %A A274533 _Omar E. Pol_, Jun 29 2016