A274534 Irregular triangle read by rows: T(n,k) = total number of k's in the first n antidiagonals of infinite Sudoku-type array A269526.
1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 3, 3, 2, 3, 2, 2, 3, 4, 3, 3, 3, 3, 1, 1, 4, 4, 4, 3, 4, 3, 2, 2, 1, 1, 5, 4, 4, 4, 5, 4, 3, 3, 2, 1, 1, 5, 5, 4, 5, 6, 5, 4, 4, 3, 1, 1, 1, 1, 5, 5, 5, 6, 7, 6, 5, 5, 4, 2, 2, 1, 1, 1, 5, 5, 6, 6, 7, 7, 6, 6, 5, 3, 3, 2, 1, 2, 1, 1, 5, 5, 6, 7, 7, 7, 7, 6, 6, 4, 4, 3, 2, 3, 2, 2, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1, 1; 1, 2, 2, 1; 2, 2, 2, 2, 1, 1; 3, 3, 2, 3, 2, 2; 3, 4, 3, 3, 3, 3, 1, 1; 4, 4, 4, 3, 4, 3, 2, 2, 1, 1; 5, 4, 4, 4, 5, 4, 3, 3, 2, 1, 1; 5, 5, 4, 5, 6, 5, 4, 4, 3, 1, 1, 1, 1; 5, 5, 5, 6, 7, 6, 5, 5, 4, 2, 2, 1, 1, 1; 5, 5, 6, 6, 7, 7, 6, 6, 5, 3, 3, 2, 1, 2, 1, 1; 5, 5, 6, 7, 7, 7, 7, 6, 6, 4, 4, 3, 2, 3, 2, 2, 1, 1; 5, 5, 7, 8, 7, 8, 8, 7, 7, 5, 5, 4, 3, 4, 3, 3, 1, 1; ... For n = 3, the first three antidiagonals of the square array A269526 are [1], [3, 2], [2, 4, 3]. There are only one 1, two 2's, two 3's and only one 4, so the third row of the triangle is [1, 2, 2, 1].
Links
- Alois P. Heinz, Rows n = 1..175, flattened
Comments