A274539 E.g.f.: exp(sum(bell(n)*z^n/n, n=1..infinity)).
1, 1, 3, 17, 155, 2079, 38629, 951187, 29979753, 1175837345, 56066617331, 3187704802281, 212628685506643, 16413606252207007, 1449425836362499605, 144977415195565990619, 16285937949513614300369, 2039447464767566886933057, 282862729890000953318773603
Offset: 0
Keywords
Programs
-
Maple
a := proc(n): n!*P(n) end: P := proc(n): if n=0 then 1 else P(n):= expand((1/n)*(add(x(n-k) * P(k), k=0..n-1))) fi; end: with(combinat): x := proc(n): bell(n) end: seq(a(n), n=0..18);
-
Mathematica
nmax = 20; CoefficientList[Series[E^(Sum[BellB[n]*z^n/n, {n, 1, nmax}]), {z, 0, nmax}], z] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 29 2016 *)
Comments