This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274550 #22 Jul 10 2016 22:59:32 %S A274550 12,15,23,24,28,33,34,35,38,39,40,42,45,47,50,52,53,56,57,58,59,60,61, %T A274550 62,63,63,64,66,69,71,72,72,73,76,77,77,79,80,81,82,82,83,84,84,85,86, %U A274550 87,87,88,90,91,91,94,94,95,95,96,96,97,98,98,99,99 %N A274550 The curvature of smallest circle among 4 mutually tangent(externally) circles with integer curvature and primitive (share no common factor). %C A274550 4 mutually tangent circles satisfy 2 (a^2 + b^2 + c^2 + d^2) = (a + b + c + d)^2 where a,b,c,d are the curvatures. %H A274550 Wikipedia, <a href="https://en.wikipedia.org/wiki/Apollonian_gasket">Apollonian gasket</a> %e A274550 a, b, c, d %e A274550 12, 4, 1, 1 %e A274550 15, 3, 2, 2 %e A274550 23, 6, 3, 2 %e A274550 24, 12, 1, 1 %e A274550 28, 9, 4, 1 %t A274550 aMax = 100; %t A274550 Do[ %t A274550 If[GCD[a, b, c] > 1, Continue[]]; %t A274550 d = a + b + c - 2 Sqrt[a b + a c + b c]; %t A274550 If[d // IntegerQ // Not, Continue[]]; %t A274550 (*{a,b,c,d}*)a // Sow; %t A274550 , {a, aMax} %t A274550 , {b, (2 a)/Sqrt[3] - a // Ceiling, (Sqrt[a] - 1)^2} %t A274550 , {c,(a-b)^2/(4(a+b))//Ceiling,Min[b,(Sqrt[a]-Sqrt[b])^2-1//Ceiling]} %t A274550 ] // Reap // Last // Last(*//TableForm*) %t A274550 d =.; %K A274550 nonn %O A274550 1,1 %A A274550 _Albert Lau_, Jul 03 2016