cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274570 Triangle, read by rows, that transforms diagonals in the array A274390 of coefficients in successive iterations of Euler's tree function (A000169).

This page as a plain text file.
%I A274570 #21 Mar 07 2025 02:53:39
%S A274570 1,1,1,7,2,1,127,20,3,1,4377,470,39,4,1,245481,19912,1125,64,5,1,
%T A274570 20391523,1326382,56505,2188,95,6,1,2354116899,127677580,4354923,
%U A274570 127056,3755,132,7,1,360734454993,16767030632,476265591,11117244,247465,5922,175,8,1,70865037282673,2880746218304,70056231213,1360983976,24228925,436632,8785,224,9,1,17367953099244051,627213971899610,13329387478113,221585119536,3281909155,47290506,716457,12440,279,10,1
%N A274570 Triangle, read by rows, that transforms diagonals in the array A274390 of coefficients in successive iterations of Euler's tree function (A000169).
%C A274570 This triangle also transforms diagonals in the array A274391 into each other, if we omit column 0 from those diagonals. The e.g.f. of row n of array A274391 equals exp(T^n(x)), where T^n(x) denotes the n-th iteration of Euler's tree function (A000169).
%H A274570 Paul D. Hanna, <a href="/A274570/b274570.txt">Table of n, a(n) for n = 0..860, of rows 0..40 of flattened triangle.</a>
%e A274570 This triangle T(n,k), n>=0, k=0..n, begins:
%e A274570   1;
%e A274570   1, 1;
%e A274570   7, 2, 1;
%e A274570   127, 20, 3, 1;
%e A274570   4377, 470, 39, 4, 1;
%e A274570   245481, 19912, 1125, 64, 5, 1;
%e A274570   20391523, 1326382, 56505, 2188, 95, 6, 1;
%e A274570   2354116899, 127677580, 4354923, 127056, 3755, 132, 7, 1;
%e A274570   360734454993, 16767030632, 476265591, 11117244, 247465, 5922, 175, 8, 1;
%e A274570   70865037282673, 2880746218304, 70056231213, 1360983976, 24228925, 436632, 8785, 224, 9, 1;
%e A274570   17367953099244051, 627213971899610, 13329387478113, 221585119536, 3281909155, 47290506, 716457, 12440, 279, 10, 1;
%e A274570   ...
%e A274570 Let D denote the triangular matrix defined by D(n,k) = T(n,k)/(n-k)!, such that D begins:
%e A274570   1;
%e A274570   1, 1;
%e A274570   7/2!, 2, 1;
%e A274570   127/3!, 20/2!, 3, 1;
%e A274570   4377/4!, 470/3!, 39/2!, 4, 1;
%e A274570   245481/5!, 19912/4!, 1125/3!, 64/2!, 5, 1;
%e A274570   20391523/6!, 1326382/5!, 56505/4!, 2188/3!, 95/2!, 6, 1;
%e A274570   ...
%e A274570 then D transforms diagonals in the array A274390 into each other:
%e A274570   D * [1, 2/2, 30/3!, 948/4!, 50680/5!, 4090980/6!, ...] =
%e A274570   [1, 4/2!, 63/3!, 2056/4!, 112625/5!, 9266706/6!, ...];
%e A274570   D * [1, 4/2!, 63/3!, 2056/4!, 112625/5!, 9266706/6!, ...] =
%e A274570   [1, 6/2!, 108/3!, 3800/4!, 219000/5!, 18704322/6!, ...];
%e A274570   D * [1, 6/2!, 108/3!, 3800/4!, 219000/5!, 18704322/6!, ...] =
%e A274570   [1, 8/2!, 165/3!, 6324/4!, 387205/5!, 34617288/6!, ...];
%e A274570   ...
%e A274570 where array A274390 consists of coefficients in the iterations of Euler's tree function (A000169), and begins:
%e A274570   1,  0,   0,     0,       0,        0,          0, ...;
%e A274570   1,  2,   9,    64,     625,     7776,     117649, ...;
%e A274570   1,  4,  30,   332,    4880,    89742,    1986124, ...;
%e A274570   1,  6,  63,   948,   18645,   454158,   13221075, ...;
%e A274570   1,  8, 108,  2056,   50680,  1537524,   55494712, ...;
%e A274570   1, 10, 165,  3800,  112625,  4090980,  176238685, ...;
%e A274570   1, 12, 234,  6324,  219000,  9266706,  463975764, ...;
%e A274570   1, 14, 315,  9772,  387205, 18704322, 1067280319, ...;
%e A274570   1, 16, 408, 14288,  637520, 34617288, 2217367600, ...;
%e A274570   ...
%e A274570 Note that this triangle also transforms the diagonals of table A274391 into each other, if we omit column 0 from those diagonals.
%e A274570 After truncating column 0, table A274391 begins:
%e A274570   1,  1,   1,     1,       1,         1,          1, ...;
%e A274570   1,  3,  16,   125,    1296,     16807,     262144, ...;
%e A274570   1,  5,  43,   525,    8321,    162463,    3774513, ...;
%e A274570   1,  7,  82,  1345,   28396,    734149,   22485898, ...;
%e A274570   1,  9, 133,  2729,   71721,   2300485,   87194689, ...;
%e A274570   1, 11, 196,  4821,  151376,   5787931,  261066156, ...;
%e A274570   1, 13, 271,  7765,  283321,  12567187,  656778529, ...;
%e A274570   1, 15, 358, 11705,  486396,  24539593, 1457297878, ...;
%e A274570   ...
%e A274570 for which the e.g.f. of row n equals exp(T^n(x)) - 1, where T^n(x) denotes the n-th iteration of Euler's tree function (A000169).
%e A274570 For example:
%e A274570   D * [1, 3/2!, 43/3!, 1345/4!, 71721/5!, 5787931/6!, ...] =
%e A274570   [1, 5/2!, 82/3!, 2729/4!, 151376/5!, 12567187/6!, ...];
%e A274570   D * [1, 5/2!, 82/3!, 2729/4!, 151376/5!, 12567187/6!, ...] =
%e A274570   [1, 7/2!, 133/3!, 4821/4!, 283321/5!, 24539593/6!, ...];
%e A274570   D * [1, 7/2!, 133/3!, 4821/4!, 283321/5!, 24539593/6!, ...] =
%e A274570   [1, 9/2!, 196/3!, 7765/4!, 486396/5!, 44223529/6!, ...];
%e A274570   ...
%e A274570 The matrix inverse of triangle D, as shown with elements [D^-1][n,k] * (n-k)!, begins:
%e A274570   1;
%e A274570   -1, 1;
%e A274570   -3, -2, 1;
%e A274570   -40, -8, -3, 1;
%e A274570   -1155, -140, -15, -4, 1;
%e A274570   -57696, -5040, -324, -24, -5, 1;
%e A274570   -4417175, -302092, -13923, -616, -35, -6, 1;
%e A274570   -479964528, -26990720, -970848, -30720, -1040, -48, -7, 1;
%e A274570   -70186001319, -3352727646, -98952435, -2439864, -58995, -1620, -63, -8, 1;
%e A274570   -13284014648320, -551688200000, -13810202640, -279099200, -5254000, -102960, -2380, -80, -9, 1;
%e A274570   -3158467118697099, -116039984093000, -2522473482375, -43202840076, -666167975, -10157796, -167475, -3344, -99, -10, 1;
%e A274570   ...
%e A274570 The matrix square of triangle D, as shown with elements [D^2][n,k] * (n-k)!, begins:
%e A274570   1;
%e A274570   2, 1;
%e A274570   18, 4, 1;
%e A274570   377, 52, 6, 1;
%e A274570   14304, 1414, 102, 8, 1;
%e A274570   859977, 65904, 3411, 168, 10, 1;
%e A274570   75306424, 4699274, 188496, 6668, 250, 12, 1;
%e A274570   9061819643, 476161840, 15542811, 426144, 11485, 348, 14, 1;
%e A274570   1435831150784, 65093379838, 1788015528, 39885108, 833280, 18162, 462, 16, 1;
%e A274570   289948340816657, 11551390491440, 273593165397, 5134299808, 87266525, 1474704, 26999, 592, 18, 1;
%e A274570   ...
%o A274570 (PARI) {T(n, k)=local(F=x,
%o A274570 LW=serreverse(x*exp(-x+x*O(x^(n+2)))), M, N, P, m=max(n, k));
%o A274570 M=matrix(m+3, m+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, LW)); polcoeff(F, c));
%o A274570 N=matrix(m+1, m+1, r, c, M[r, c]);
%o A274570 P=matrix(m+1, m+1, r, c, M[r+1, c]);
%o A274570 (n-k)!*(P~*N~^-1)[n+1, k+1]}
%o A274570 /* Print this triangle: */
%o A274570 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%Y A274570 Cf. A274390, A274571, A274572, A274573, A274574.
%K A274570 nonn,tabl
%O A274570 0,4
%A A274570 _Paul D. Hanna_, Jun 28 2016