cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274600 Coefficients in an asymptotic expansion of sequence A002893.

This page as a plain text file.
%I A274600 #12 Nov 11 2016 03:42:53
%S A274600 1,-1,1,2,7,59,616,6992,90847,1352549,22591681,417527582,8465505412,
%T A274600 186906393764,4463901355096,114672825810272,3153127461349327,
%U A274600 92405864554182329,2875362251645606611,94680648376734042062,3289274269898822961967,120235993277078434540619
%N A274600 Coefficients in an asymptotic expansion of sequence A002893.
%H A274600 Vaclav Kotesovec, <a href="/A274600/b274600.txt">Table of n, a(n) for n = 0..80</a>
%H A274600 Mathematics.StackExchange, <a href="http://math.stackexchange.com/questions/2006632/sum-involving-the-product-of-binomial-coefficients">sum involving the product of binomial coefficients</a>, Nov 10 2016.
%F A274600 Conjecture: a(n) ~ (2/log(3))^n * (n-1)! / (Pi*sqrt(3)).
%e A274600 A002893(n) ~ 3^(2*n+3/2)/(4*Pi*n) * (1 - 1/(4*n) + 1/(4*n)^2 + 2/(4*n)^3 + 7/(4*n)^4 + 59/(4*n)^5 + ...)
%Y A274600 Cf. A002893.
%K A274600 sign
%O A274600 0,4
%A A274600 _Vaclav Kotesovec_, Nov 10 2016