This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274602 #36 Sep 08 2022 08:46:17 %S A274602 0,1,1,2,5,2,3,11,9,3,4,19,20,13,4,5,29,35,29,17,5,6,41,54,51,38,21,6, %T A274602 7,55,77,79,67,47,25,7,8,71,104,113,104,83,56,29,8,9,89,135,153,149, %U A274602 129,99,65,33,9,10,109,170,199,202,185,154,115,74,37,10 %N A274602 Triangle read by rows: T(n,k) = k*(n-k+1)^2 + n - k, 0 <= k <= n. %C A274602 Mirrored version of a(n) is T(n,k) = (n-k)*(k+1)^2+k, 0 <= k <= n, read by rows: %C A274602 0 %C A274602 1 1 %C A274602 2 5 2 %C A274602 3 9 11 3 %C A274602 4 13 20 19 4 %C A274602 5 17 29 35 29 5 %C A274602 As an infinite square array (matrix) with comments: %C A274602 0 1 2 3 4 5 A001477 %C A274602 1 5 11 19 29 41 A028387 %C A274602 2 9 20 35 54 77 A014107 %C A274602 3 13 29 51 79 113 A144391 %C A274602 4 17 38 67 104 149 A182868 %C A274602 5 21 47 83 129 185 %e A274602 0; 1,1; 2,5,2; 3,11,9,3; 4,19,20,13,4; 5,29,35,29,17,5; ... %e A274602 As an infinite triangular array: %e A274602 0 %e A274602 1 1 %e A274602 2 5 2 %e A274602 3 11 9 3 %e A274602 4 19 20 13 4 %e A274602 5 29 35 29 17 5 %e A274602 As an infinite square array (matrix) with comments: %e A274602 0 1 2 3 4 5 A001477 %e A274602 1 5 9 13 17 21 A016813 %e A274602 2 11 20 29 38 47 A017185 %e A274602 3 19 35 51 67 83 %e A274602 4 29 54 79 104 129 %e A274602 5 41 77 113 149 185 %t A274602 Table[k (n - k + 1)^(k + #) + n - k &[2 - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Dec 02 2016 *) %o A274602 (Magma) /* As triangle */ [[k*(n-k+1)^2+n-k: k in [0..n]]: n in [0..10]]; %Y A274602 Cf. A002064, A001477, A016813, A017185, A062158 (central column). A028387, A014107, A144391, A182868. %Y A274602 Cf. Triangle read by rows: T(n,k) = k*(n-k+1)^m+n-k, 0 <= k <= n: A003056 (m = 0), A059036 (m = 1), A278910 (m = k). %K A274602 nonn,tabl %O A274602 1,4 %A A274602 _Juri-Stepan Gerasimov_, Dec 01 2016