cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274615 Third column (that is, the c=2 column) of array in A274528.

This page as a plain text file.
%I A274615 #31 Mar 07 2020 13:52:25
%S A274615 1,4,5,2,0,8,3,6,7,12,13,10,11,9,17,14,15,20,21,18,16,24,19,22,23,28,
%T A274615 29,26,27,25,33,30,31,36,37,34,32,40,35,38,39,44,45,42,43,41,49,46,47,
%U A274615 52,53,50,48,56,51,54,55,60,61,58,59,57,65,62,63,68,69,66
%N A274615 Third column (that is, the c=2 column) of array in A274528.
%H A274615 F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52.
%F A274615 This is a permutation of the nonnegative numbers (see the general proof in A269526).
%F A274615 It appears that the permutation is given by a(0)=0, and, for n >= 1, n = 16t+i (0 <= i <= 15) we have a(16t+i) = 16t + c_i, where [c_0, ..., c_15] = [-1,4,5,2,0,8,3,6,7,12,13,10,11,9,17,14]. - _N. J. A. Sloane_, Jul 01 2016, based on an email from _Bob Selcoe_, Jun 29 2016.
%F A274615 Equivalently, it appears that this sequence has g.f. = f/g where
%F A274615 f = 2*t^17 - 3*t^15 + 8*t^14 - 2*t^13 + t^12 - 3*t^11 + t^10 + 5*t^9 + t^8 + 3*t^7 - 5*t^6 + 8*t^5 - 2*t^4 - 3*t^3 + t^2 + 3*t + 1, and g = (1-t)*(1-t^16). - _N. J. A. Sloane_, Jul 06 2019
%t A274615 A[n_, k_] := A[n, k] = Module[{m, s}, If[n == 1 && k == 1, 0, s = Join[ Table[A[i, k], {i, 1, n - 1}], Table[A[n, j], {j, 1, k - 1}], Table[A[n - t, k - t], {t, 1, Min[n, k] - 1}], Table[A[n + j, k - j], {j, 1, k - 1}]]; For[m = 0, MemberQ[s, m], m++]; m]];
%t A274615 a[n_] := A[n + 1, 3];
%t A274615 a /@ Range[0, 100] (* _Jean-François Alcover_, Feb 28 2020, after _Alois P. Heinz_ in A269526 *)
%Y A274615 Cf. A274528, A269526; equals A274614(n+1) - 1.
%K A274615 nonn
%O A274615 0,2
%A A274615 _N. J. A. Sloane_, Jun 30 2016
%E A274615 More terms from _Alois P. Heinz_, Jul 01 2016