A274621 Coefficients in the expansion Product_{ n>=1 } (1-q^(2n-1))^2/(1-q^(2n))^2.
1, -2, 3, -6, 11, -18, 28, -44, 69, -104, 152, -222, 323, -460, 645, -902, 1254, -1722, 2343, -3174, 4278, -5722, 7601, -10056, 13250, -17358, 22623, -29382, 38021, -48984, 62857, -80404, 102528, -130282, 165002, -208398, 262495, -329666, 412878, -515840, 642941, -799362, 991478
Offset: 0
References
- R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 575, 16.23.1 and 16.23.2.
- R. W. Gosper, Experiments and discoveries in q-trigonometry, Preprint.
- R. W. Gosper, q-Trigonometry: Some Prefatory Afterthoughts
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[(1 - x^(2*k-1))^2 / (1 - x^(2*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
Formula
From Wolfdieter Lang, Jul 05 2016: (Start)
G.f.: 1/(theta_2(0, sqrt(q))/(2*q^(1/8)))^2, with the Jacobi theta_2 function.
G.f.: 1/(Sum_{n >= 0} q^(n*(n+1)/2))^2.
G.f.: 1/(Prod_{n >= 1} (1 - q^n) * (1 + q^n)^2)^2 = 1/(Prod_{n >= 1} (1 - q^(2*n)) * (1 + q^n ))^2 = Prod_{n >= 1} (1 - q^(2n-1))^2 / (1 - q^(2n))^2. For the last equality, giving the g.f. of the name, see the Euler identity, mentioned in a Jul 05 2016 comment of A010054. (End)
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(5/2)*n^(5/4)). - Vaclav Kotesovec, Jul 05 2016
Comments