This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274641 #41 Aug 16 2020 12:41:36 %S A274641 0,1,2,3,1,2,3,4,5,0,3,5,1,0,5,4,2,0,4,1,5,0,1,3,4,2,6,7,4,3,8,6,7,2, %T A274641 9,10,3,6,7,5,2,8,4,6,7,8,9,10,11,5,7,8,10,9,11,12,6,5,9,8,11,12,13, %U A274641 14,7,1,8,11,6,9,10,12,13,9,8,5,12,4,2,14,15,6,0,9,12,11,13,10,14,2,7,4,0,11,10,13,6,3,1,15,8,16,0,7,10 %N A274641 Counterclockwise square spiral constructed by greedy algorithm, so that each row, column, and diagonal contains distinct numbers. Start with 0 (so in this version a(n) = A274640(n) - 1). %C A274641 See A274640 for further information. %C A274641 Presumably every row, column, and diagonal is a permutation of the natural numbers, but is there a proof? - _N. J. A. Sloane_, Jul 10 2016 %H A274641 N. J. A. Sloane, <a href="/A274641/b274641.txt">Table of n, a(n) for n = 0..20000</a> [Based on Alois Heinz's b-file for A274640] %H A274641 F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52. %H A274641 Rémy Sigrist, <a href="/A274641/a274641.png">Colored representation of the spiral for -500 <= x, y <= 500</a> %H A274641 N. J. A. Sloane, <a href="/A195264/a195264.pdf">Confessions of a Sequence Addict (AofA2017)</a>, slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence. %e A274641 From _Jon E. Schoenfield_, Dec 26 2016: (Start) %e A274641 The spiral begins: %e A274641 . %e A274641 8--15---1---3---6--13--10--11---0---4---7 %e A274641 | | %e A274641 16 7--14--13--12--11---8---9---5---6 2 %e A274641 | | | | %e A274641 0 1 3--10---9---2---7---6---8 12 14 %e A274641 | | | | | | %e A274641 7 8 6 2---4---5---0---1 3 11 10 %e A274641 | | | | | | | | %e A274641 10 11 7 0 1---3---2 5 4 9 13 %e A274641 | | | | | | | | | | %e A274641 14 6 5 4 2 0---1 3 7 10 11 %e A274641 | | | | | | | | | %e A274641 13 9 2 1 3---4---5---0 6 8 12 %e A274641 | | | | | | | %e A274641 6 10 8 5---0---1---3---4---2 7 9 %e A274641 | | | | | %e A274641 3 12 4---6---7---8---9--10--11---5 0 %e A274641 | | | %e A274641 11 13---9---8---5--12---4---2--14--15---6 %e A274641 | %e A274641 9--14---0--11--15---7--13--12--10--17--16 %e A274641 . %e A274641 (End) %Y A274641 Cf. A274640 (if start with 1 at center), A324481 (position of first n). %Y A274641 For the eight spokes see A324774-A324781. %K A274641 nonn %O A274641 0,3 %A A274641 _N. J. A. Sloane_, Jul 09 2016, based on the entry A274640 from _Zak Seidov_ and _Kerry Mitchell_, Jun 30 2016