A274654 Denominators of coefficients of z^n/n! for the expansion of Fricke's hypergeometric function F_1(1/2,1/2;z).
1, 2, 32, 128, 4096, 16384, 131072, 524288, 33554432, 134217728, 1073741824, 4294967296, 68719476736, 274877906944, 2199023255552, 8796093022208, 1125899906842624, 4503599627370496, 36028797018963968, 144115188075855872, 2305843009213693952
Offset: 0
Examples
See A274653.
References
- See A274653.
Crossrefs
Cf. A274653.
Formula
a(n) = denominator(r(n)), with the rationals (in lowest terms) defined by the recurrence
r(n) = ((2*n-1)^2/(4*n))*r(n-1) + 2*c(n)/(n*(2*n-1)), n >= 1, r(0) = 0, with c(n) = ((2*n)!)^2 / (n!^3*2^(4*n)).
Comments