A274653 Numerators of coefficients of z^n/n! for the expansion of Fricke's hypergeometric function F_1(1/2,1/2;z).
0, 1, 21, 185, 18655, 307503, 12548151, 305496477, 138343008375, 4464248592375, 323592065474535, 13015087974100485, 2301190559547593805, 110887163426713235625, 11570760017278599886875, 649837647729572203369125, 1250848387902442801195686375, 80233244659365977333374518375
Offset: 0
Examples
The sequence of rationals {r(n)} begins: 0, 1/2, 21/32, 185/128, 18655/4096, 307503/16384, 12548151/131072, 305496477/524288, 138343008375/33554432, 4464248592375/134217728, 323592065474535/1073741824, .... The expansion of F_1(1/2,1/2;z) begins: (1/2)*z + (21/32)*z^2/2! + (185/128)*z^3/3! + (18655/4096)*z^4/4! + (307503/16384)*z^5/5! + ..., or (1/2)*z + (21/64)*z^2 + (185/768)*z^3 + (18655/98304)*z^4 + (102501/655360)*z^5 + ...
Links
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Erster Teil, Springer-Verlag, 2012, p. 465, eq. (11) with p.114, eq. (15).
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Dritter Teil, Springer-Verlag, 2012, p. 2, eq. (3).
Formula
a(n) = numerator(r(n)), with the rationals (in lowest terms) r(n) = [z^n/n!]F_1(1/2,1/2;z), with the hypergeometric function F_1 given by Fricke. The recurrence of the coefficients r(n) = f(1/2,1/2;n) is obtained from the general one given above.
r(n) = ((2*n-1)^2/(4*n))*r(n-1) + 2*c(n)/(n*(2*n-1)), n >= 1, r(0) = 0, with c(n) = c(1/2,1/2;n) = ((2*n)!)^2 / (n!^3*2^(4*n)) (see A274657/A123854).
E.g.f. for r(n) is Fricke's F_1(1/2,1/2;z).
Comments