This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274658 #26 May 02 2025 02:53:46 %S A274658 1,1,3,1,5,1,7,1,3,9,1,11,1,13,1,3,5,15,1,17,1,19,1,3,7,21,1,23,1,5, %T A274658 25,1,3,9,27,1,29,1,31,1,3,11,33,1,5,7,35,1,37,1,3,13,39,1,41,1,43,1, %U A274658 3,5,9,15,45 %N A274658 Irregular triangle which lists in row n the divisors of 2*n+1. %C A274658 The length of row n is A099774(n+1). %C A274658 This gives the odd numbered rows of the irregular triangle A027750. %C A274658 The row sums are given in A008438. %C A274658 The entries of row n appear, for instance, as arguments of sin in the Fourier expansion of Jacobi's elliptic function sn in the second factor Sum_{n>=0} (q^n/(1-q^(2*n+1)))*sin((2*n+1)*v) as coefficients of q^n. See e.g., the formula in Abramowitz-Stegun, p. 575, 16.23.1 (or 16.23.2 for cn but with signs). See also A274659. %H A274658 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, %F A274658 T(n, k) = k-th divisor of 2*n+1 in increasing order. %e A274658 The irregular triangle T(n, k) begins: %e A274658 n, 2n+1\k 1 2 3 4 ... %e A274658 0, 1: 1 %e A274658 1, 3: 1 3 %e A274658 2, 5: 1 5 %e A274658 3, 7: 1 7 %e A274658 4, 9: 1 3 9 %e A274658 5, 11: 1 11 %e A274658 6, 13: 1 13 %e A274658 7, 15: 1 3 5 15 %e A274658 8, 17: 1 17 %e A274658 9, 19: 1 19 %e A274658 10, 21: 1 3 7 21 %e A274658 11, 23: 1 23 %e A274658 12, 25: 1 5 25 %e A274658 13, 27: 1 3 9 27 %e A274658 14, 29: 1 29 %e A274658 15, 31: 1 31 %e A274658 16, 33: 1 3 11 33 %e A274658 17, 35: 1 5 7 35 %e A274658 18, 37: 1 37 %e A274658 19, 39: 1 3 13 39 %e A274658 20, 41: 1 41 %e A274658 ... %e A274658 The above mentioned second factor in the sn formula has as q^4 coefficient: sin(1*v) + sin(3*v) + sin(9*v). %t A274658 Table[Divisors[2 n + 1], {n, 0, 22}] // Flatten (* _Michael De Vlieger_, Jul 18 2016 *) %o A274658 (PARI) row(n) = divisors(2*n+1); \\ _Amiram Eldar_, May 02 2025 %Y A274658 Cf. A008438 (row sums), A027750, A099774 (row lengths), A274659. %K A274658 nonn,tabf,easy %O A274658 0,3 %A A274658 _Wolfdieter Lang_, Jul 18 2016