This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274660 #18 Aug 13 2023 17:32:53 %S A274660 1,-1,3,1,5,-1,7,1,-3,9,-1,11,1,13,-1,3,-5,15,1,17,-1,19,1,-3,-7,21, %T A274660 -1,23,1,5,25,-1,3,-9,27,1,29,-1,31,1,-3,-11,33,-1,-5,7,35,1,37,-1,3, %U A274660 -13,39,1,41,-1,43,1,-3,5,9,-15,45,-1,47,1,-7,49,-1,3,-17,51,1,53,-1,-5,11,55,1,-3,-19,57,-1,59,1,61 %N A274660 Irregular triangle read by rows in which row n lists the divisors d of 2*n+1 (A274658), given the sign (-1)^(n + (d-1)/2). %C A274660 The length of row n is A099774(n+1). %C A274660 The unsigned irregular triangle is given in A274658. %C A274660 The sum of row n gives A228443(n). %C A274660 The entries of row n appear in the Fourier expansion of Jacobi's elliptic function cn in the rewritten second factor Sum_{n>=0} (q^n/(1+q^(2*n+1))) * cos((2*n+1)*v) as Sum_{n>=0} q^n*Sum_{k=1..A099774(n+1)} sign(a(n,k))*cos(abs(a(n,k))*v). See e.g., the formula in Abramowitz-Stegun, p. 575, 16.23.2. %H A274660 Michael De Vlieger, <a href="/A274660/b274660.txt">Table of n, a(n) for n = 0..12574</a> (0 <= n <= 2500) %H A274660 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, %F A274660 T(n, k) = (-1)^(n + (d(k)-1)/2)*d(k) with d(k) the k-th divisor of 2*n+1 in increasing order. %e A274660 The irregular triangle T(n, k) begins: %e A274660 n, 2n+1\k 1 2 3 4 ... %e A274660 0, 1: 1 %e A274660 1, 3: -1 3 %e A274660 2, 5: 1 5 %e A274660 3, 7: -1 7 %e A274660 4, 9: 1 -3 9 %e A274660 5, 11: -1 11 %e A274660 6, 13: 1 13 %e A274660 7, 15: -1 3 -5 15 %e A274660 8, 17: 1 17 %e A274660 9, 19: -1 19 %e A274660 10, 21: 1 -3 -7 21 %e A274660 11, 23: -1 23 %e A274660 12, 25: 1 5 25 %e A274660 13, 27: -1 3 -9 27 %e A274660 14, 29: 1 29 %e A274660 15, 31: -1 31 %e A274660 16, 33: 1 -3 -11 33 %e A274660 17, 35: -1 -5 7 35 %e A274660 18, 37: 1 37 %e A274660 19, 39: -1 3 -13 39 %e A274660 20, 41: 1 41 %e A274660 ... %e A274660 The above mentioned expansion coefficient of q^4 of the second factor of the cn formula is +cos(1*v) - cos(3*v) + cos(9*v). %t A274660 Table[(-1)^(n + (# - 1)/2) # &@ Divisors[2 n + 1], {n, 0, 30}] // Flatten (* _Michael De Vlieger_, Aug 01 2016 *) %Y A274660 Cf. A099774, A228443, A274658. %K A274660 sign,easy,tabf %O A274660 0,3 %A A274660 _Wolfdieter Lang_, Jul 27 2016