A274664 Sum of n-th powers of the roots of x^3 + 11*x^2 - 4*x - 1.
3, -11, 129, -1460, 165655, -187926, 2131986, -24186985, 274396853, -3112981337, 35316195134, -400655674969, 4545364223858, -51566312967180, 585010243859443, -6636832570098735, 75293632933556677, -854192282305658944, 9690652804526376357, -109938656346079219026, 1247233638742671255770
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..900
- Index entries for linear recurrences with constant coefficients, signature (-11,4,1).
Crossrefs
Cf. A274663.
Programs
-
PARI
Vec((3+22*x-4*x^2+149090*x^4+1639990*x^5-596360*x^6-149090*x^7) / (1+11*x-4*x^2-x^3) + O(x^20)) \\ Colin Barker, Jul 03 2016
-
PARI
first(n)=my(x='x); polsym(x^3+11*x^2-4*x-1,n) \\ Charles R Greathouse IV, Jul 10 2016
Formula
a(0) = 3, a(1) = -11, a(2) = 129; thereafter a(n) = -11*a(n-1) + 4*a(n-2) + a(n-3).
a(n) = ((cos(2*Pi/7)*cos(4*Pi/7))/(cos(Pi/7))^2)^n +(-(cos(4*Pi/7)*cos(Pi/7))/(cos(2*Pi/7))^2)^n +(-(cos(Pi/7)*cos(2*Pi/7))/(cos(4*Pi/7))^2)^n.
G.f.: (3+22*x-4*x^2+149090*x^4+1639990*x^5-596360*x^6-149090*x^7) / (1+11*x-4*x^2-x^3). - Colin Barker, Jul 03 2016
Comments