This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274678 #24 Apr 15 2024 16:22:41 %S A274678 1,2,3,5,7,34,38,49,51,89,91,132,227,3662,5019,9729,25437,99944, %T A274678 106553,114577 %N A274678 Numbers k such that 7*10^k + 27 is prime. %H A274678 Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 70w27</a>. %e A274678 3 is in this sequence because 7*10^3 + 27 = 7027 is prime. %e A274678 4 is not in the sequence because 7*10^4 + 27 = 70027 = 239 * 293. %e A274678 Initial terms and associated primes: %e A274678 a(1) = 1: 97; %e A274678 a(2) = 2: 727; %e A274678 a(3) = 3: 7027; %e A274678 a(4) = 5: 700027, etc. %t A274678 Select[Range[0, 3000], PrimeQ[7 10^# + 27] &] %o A274678 (Magma) [n: n in [1..800] | IsPrime(7*10^n+27)]; %o A274678 (PARI) lista(nn) = for(n=1, nn, if(ispseudoprime(7*10^n+27), print1(n, ", "))); \\ _Altug Alkan_, Jul 05 2016 %o A274678 (Python) %o A274678 from sympy import isprime %o A274678 def afind(limit, startk=0): %o A274678 sevenpow10 = 7*10**startk %o A274678 for k in range(startk, limit+1): %o A274678 if isprime(sevenpow10 + 27): %o A274678 print(k, end=", ") %o A274678 k += 1 %o A274678 sevenpow10 *= 10 %o A274678 afind(500) # _Michael S. Branicky_, Dec 31 2021 %Y A274678 Cf. similar sequences listed in A274676. %K A274678 nonn,more %O A274678 1,2 %A A274678 _Vincenzo Librandi_, Jul 04 2016 %E A274678 a(15)-a(16) from _Michael S. Branicky_, Dec 31 2021 %E A274678 a(17)-a(20) from Kamada data by _Tyler Busby_, Apr 14 2024