A274682 Numbers n such that 8*n-1 is a triangular number.
2, 7, 29, 44, 88, 113, 179, 214, 302, 347, 457, 512, 644, 709, 863, 938, 1114, 1199, 1397, 1492, 1712, 1817, 2059, 2174, 2438, 2563, 2849, 2984, 3292, 3437, 3767, 3922, 4274, 4439, 4813, 4988, 5384, 5569, 5987, 6182, 6622, 6827, 7289, 7504, 7988, 8213, 8719
Offset: 1
Examples
2 is in the sequence since 8*2 - 1 = 15, and 15 = 1 + 2 + 3 + 4 + 5 is a triangular number. - _Michael B. Porter_, Jul 03 2016
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Mathematica
Table[(5 + 3 (-1)^n - 2 (8 + 3 (-1)^n) n + 16 n^2)/4, {n, 47}] (* or *) Rest@ CoefficientList[Series[x (2 + 5 x + 18 x^2 + 5 x^3 + 2 x^4)/((1 - x)^3 (1 + x)^2), {x, 0, 47}], x] (* Michael De Vlieger, Jul 02 2016 *)
-
PARI
isok(n) = ispolygonal(8*n-1, 3)
-
PARI
select(n->ispolygonal(8*n-1, 3), vector(10000, n, n-1))
-
PARI
Vec(x*(2+5*x+18*x^2+5*x^3+2*x^4)/((1-x)^3*(1+x)^2) + O(x^100))
Formula
a(n) = (5+3*(-1)^n-2*(8+3*(-1)^n)*n+16*n^2)/4.
a(n) = (8*n^2-11*n+4)/2 for n even.
a(n) = (8*n^2-5*n+1)/2 for n odd.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: x*(2+5*x+18*x^2+5*x^3+2*x^4) / ((1-x)^3*(1+x)^2).