cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274685 Odd numbers n such that sigma(n) is divisible by 5.

Original entry on oeis.org

19, 27, 29, 57, 59, 79, 87, 89, 95, 109, 133, 135, 139, 145, 149, 171, 177, 179, 189, 199, 203, 209, 229, 237, 239, 247, 261, 267, 269, 285, 295, 297, 319, 323, 327, 343, 349, 351, 359, 377, 379, 389, 395, 399, 409, 413, 417, 419, 435, 437, 439, 445, 447, 449, 459, 475, 479, 493, 499
Offset: 1

Views

Author

M. F. Hasler, Jul 02 2016

Keywords

Comments

The subsequence of odd terms in A274397.
If n is in the sequence and gcd(n,m)=1 for some odd m, then n*m is also in the sequence. One might call "primitive" those terms which are not of this form, i.e., not a "coprime" multiple of an earlier term. The list of these primitive terms is (19, 27, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 343, 349, 359, 379, 389, 409, 419, 439, 449, 479, 499, ...). The primitive terms are the primes and powers of primes within the sequence. If a prime power p^k (k >= 1) is in the sequence, then p^(m(k+1)-1) is in the sequence for any m >= 1, since 1+p+...+p^(m(k+1)-1) = (1+p+...+p^k)(1+p^(k+1)+...+p^((m-1)*(k+1))). For example, with the prime p=19 we also have all odd powers 19^3, 19^5, ..., and with 27 = 3^3, we also have 27^5, 27^9, ... in the sequence.
On the other hand, for any prime p <> 5 there is an exponent k in {1, 3, 4} such that p^k is in this sequence (and therewith all higher powers of the form given above).
One may notice that there are many pairs of the form (30k-3, 30k-1), e.g., 27,29; 57,59; 87,89; 177,179; 237,239; 295,299; ... Indeed, it is likely that 30k-1 is prime and in this case, if 10k-1 is also prime, then sigma(30k-3) = 40k is divisible by 5 and sigma(30k-1) = 30k is also divisible by 5.

Examples

			Some values of a(2^k): a(2) = 27, a(4) = 57, a(8) = 89, a(16) = 171, a(32) = 297, a(64) = 545, a(128) = 1029, a(256) = 1937, a(512) = 3625, a(1024) = 6939, a(2048) = 13257, a(4096) = 25483, a(8192) = 49319, a(16384) = 95695, a(32768) = 185991, a(65536) = 362725, a(131072) = 708887, a(262144) = 1388367, a(524288) = 2722639, a(1048576) = 5346681, a(2097152) = 10514679, a(4194304) = 20698531, a(8388608) = 40790203.
		

Crossrefs

Cf. A000203 (sigma), A028983 (sigma even), A087943 (sigma = 3k), A248150 (sigma = 4k); A028982 (sigma is odd), A248151 (sigma is not divisible by 4); A272930(sigma(sigma(k)) = nk).

Programs

  • Mathematica
    Select[Range[1, 500, 2], Divisible[DivisorSigma[1, #], 5] &] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    is_A274685(n)=sigma(n)%5==0&&bittest(n,0)
    
  • PARI
    forstep(n=1,999,2,sigma(n)%5||print1(n","))

Formula

a(n) ~ 2n. - Charles R Greathouse IV, Jul 16 2016