This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274694 #11 Mar 14 2020 17:15:42 %S A274694 1,2,3,4,6,12,211050,3848880,20333040,125038830,2978699430 %N A274694 Variation on Fermat's Diophantine m-tuple: 1 + the product of any two distinct terms is a prime power. %C A274694 a(1) = 1; for n>1, a(n) = smallest integer > a(n-1) such that a(n)*a(i)+1 is a prime power for all 1 <= i <= n-1. %e A274694 After a(1)=1, a(2)=2, a(3)=3, we want m, the smallest number > 3 such that m+1, 2m+1 and 3m+1 are all prime powers: this is m = 4 = a(4). %o A274694 (Sage) %o A274694 seq = [1] %o A274694 prev_element = 1 %o A274694 max_n = 8 %o A274694 for n in range(2, max_n+1): %o A274694 next_element = prev_element + 1 %o A274694 while True: %o A274694 all_match = True %o A274694 for element in seq: %o A274694 x = element * next_element + 1 %o A274694 if not x.is_prime_power(): %o A274694 all_match = False %o A274694 break %o A274694 if all_match: %o A274694 seq.append( next_element ) %o A274694 break %o A274694 next_element += 1 %o A274694 prev_element = next_element %o A274694 print(seq) %Y A274694 Cf. A030063, A034881, A246655. %K A274694 nonn,more %O A274694 1,2 %A A274694 _Robert C. Lyons_, Jul 02 2016