This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274695 #16 Mar 14 2020 17:21:29 %S A274695 1,2,6,133,97479304649455554938377 %N A274695 a(1) = 1; for n>1, a(n) = smallest number > a(n-1) such that a(1)*a(2)*...*a(n) + 1 is a Fibonacci number. %C A274695 a(6) = (Fibonacci(7937)-1)/(a(2)*a(3)*a(4)*a(5)) has 1633 digits and it is thus too large to be included in Data section or in a b-file. - _Giovanni Resta_, Jul 05 2016 %e A274695 After a(1)=1 and a(2)=2, we want m, the smallest number > 2 such that 1*2*m+1 is a Fibonacci number: this is m = 6 = a(3). %t A274695 a[1] = 1; a[n_] := a[n] = Block[{p = Times @@ Array[a, n-1], i, m}, For[i=2, ! (IntegerQ[m = (Fibonacci[i] - 1)/p] && m > a[n-1]), i++]; m]; Array[a, 6] (* _Giovanni Resta_, Jul 05 2016 *) %o A274695 (Sage) %o A274695 product = 1 %o A274695 seq = [ product ] %o A274695 prev_fib_index = 0 %o A274695 max_n = 5 %o A274695 for n in range(2, max_n+1): %o A274695 fib_index = prev_fib_index + 1 %o A274695 found = False %o A274695 while not found: %o A274695 fib_minus_1 = fibonacci(fib_index) - 1 %o A274695 if product.divides(fib_minus_1): %o A274695 m = int( fib_minus_1 / product ) %o A274695 if m > seq[-1]: %o A274695 product = product * m %o A274695 seq.append( m ) %o A274695 found = True %o A274695 prev_fib_index = fib_index %o A274695 break %o A274695 fib_index += 1 %o A274695 print(seq) %Y A274695 Cf. A000045, A046966. %K A274695 nonn %O A274695 1,2 %A A274695 _Robert C. Lyons_, Jul 04 2016 %E A274695 a(5) from _Giovanni Resta_, Jul 05 2016