This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274696 #16 Mar 14 2020 17:14:14 %S A274696 0,1,3,8,15,24,120,168,840,1680,5040,201600,256032000 %N A274696 Variation on Fermat's Diophantine m-tuple: 1 + the LCM of any two distinct terms is a square. %C A274696 a(1) = 0; for n>1, a(n) = smallest integer > a(n-1) such that lcm(a(n),a(i))+1 is square for all 1 <= i <= n-1. %e A274696 After a(1)=0, a(2)=1, a(3)=3, we want m, the smallest number > 3 such that lcm(0,m)+1, lcm(2,m)+1 and lcm(3,m)+1 are squares: this is m = 8 = a(4). %t A274696 a = {0}; Do[AppendTo[a, SelectFirst[Range[Max@ a + 1, 3*10^5], Function[k, Times @@ Boole@ Map[IntegerQ@ Sqrt[LCM[a[[#]], k] + 1] &, Range[n - 1]] == 1]]], {n, 2, 12}]; a (* _Michael De Vlieger_, Jul 05 2016, Version 10 *) %o A274696 (Sage) %o A274696 seq = [0] %o A274696 prev_element = 0 %o A274696 max_n = 13 %o A274696 for n in range(2, max_n+1): %o A274696 next_element = prev_element + 1 %o A274696 while True: %o A274696 all_match = True %o A274696 for element in seq: %o A274696 x = lcm( element, next_element ) + 1 %o A274696 if not is_square(x): %o A274696 all_match = False %o A274696 break %o A274696 if all_match: %o A274696 seq.append( next_element ) %o A274696 print(seq) %o A274696 break %o A274696 next_element += 1 %o A274696 prev_element = next_element %o A274696 print(seq) %Y A274696 Cf. A030063. %K A274696 nonn %O A274696 1,3 %A A274696 _Robert C. Lyons_, Jul 05 2016