This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274697 #10 Mar 14 2020 11:25:11 %S A274697 0,3,15,24,48,63,120,195,255,528,960,3024,3363,3480,3720,3843,4095, %T A274697 4623,5475,12099,16383,19599,24963,37635,38415,44943,56643,62499, %U A274697 65535,69168,71823,85263,94863,114243,168099 %N A274697 Variation on Fermat's Diophantine m-tuple: 1 + the GCD of any two distinct terms is a square. %C A274697 a(1) = 0; for n>1, a(n) = smallest integer > a(n-1) such that GCD(a(n),a(i))+1 is square for all 1 <= i <= n-1. %e A274697 After a(1)=0, a(2)=3, a(3)=15, we want m, the smallest number > 15 such that GCD(0,m)+1, GCD(3,m)+1 and GCD(15,m)+1 are squares: this is m = 24 = a(4). %o A274697 (Sage) %o A274697 seq = [] %o A274697 prev_element = 0 %o A274697 seq.append( prev_element ) %o A274697 max_n = 35 %o A274697 for n in range(2, max_n+1): %o A274697 next_element = prev_element + 1 %o A274697 while True: %o A274697 all_match = True %o A274697 for element in seq: %o A274697 x = gcd( element, next_element ) + 1 %o A274697 if not ( is_square(x) ): %o A274697 all_match = False %o A274697 break %o A274697 if all_match: %o A274697 seq.append( next_element ) %o A274697 print(seq) %o A274697 break %o A274697 next_element = next_element + 1 %o A274697 prev_element = next_element %o A274697 print(seq) %Y A274697 Cf. A030063. %K A274697 nonn %O A274697 1,2 %A A274697 _Robert C. Lyons_, Jul 05 2016