This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274706 #31 May 20 2025 21:08:57 %S A274706 1,1,0,2,0,4,2,2,0,2,0,2,6,4,6,4,4,4,2,0,6,0,6,0,4,0,2,0,2,6,24,16,20, %T A274706 14,16,12,8,6,8,4,4,2,8,0,14,0,14,0,10,0,10,0,6,0,4,0,2,0,2,36,52,68, %U A274706 48,64,48,48,40,44,32,36,24,22,16,16,8,10,8,4,4,2 %N A274706 Irregular triangle read by rows. T(n,k) (n >= 0) is a statistic on orbital systems over n sectors: the number of orbitals which have an integral whose absolute value is k. %C A274706 For the combinatorial definitions see A232500. The absolute integral of an orbital w over n sectors is abs(Sum_{k=1..n} Sum_{i=1..k} w(i)) where w(i) are the jumps of the orbital represented by -1, 0, 1. %C A274706 An orbital is balanced if its integral is 0 (A241810). %H A274706 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/Orbitals">Orbitals</a> %e A274706 The length of row n is 1+floor(n^2//4). %e A274706 The triangle begins: %e A274706 [n] [k=0,1,2,...] [row sum] %e A274706 [0] [1] 1 %e A274706 [1] [1] 1 %e A274706 [2] [0, 2] 2 %e A274706 [3] [0, 4, 2] 6 %e A274706 [4] [2, 0, 2, 0, 2] 6 %e A274706 [5] [6, 4, 6, 4, 4, 4, 2] 30 %e A274706 [6] [0, 6, 0, 6, 0, 4, 0, 2, 0, 2] 20 %e A274706 [7] [6, 24, 16, 20, 14, 16, 12, 8, 6, 8, 4, 4, 2] 140 %e A274706 [8] [8, 0, 14, 0, 14, 0, 10, 0, 10, 0, 6, 0, 4, 0, 2, 0, 2] 70 %e A274706 T(5, 4) = 4 because the integral of four orbitals have the absolute value 4: %e A274706 Integral([-1, -1, 1, 1, 0]) = -4, Integral([0, -1, -1, 1, 1]) = -4, %e A274706 Integral([0, 1, 1, -1, -1]) = 4, Integral([1, 1, -1, -1, 0]) = 4. %o A274706 (Sage) %o A274706 from itertools import accumulate %o A274706 # Brute force counting %o A274706 def unit_orbitals(n): %o A274706 sym_range = [i for i in range(-n+1, n, 2)] %o A274706 for c in Combinations(sym_range, n): %o A274706 P = Permutations([sgn(v) for v in c]) %o A274706 for p in P: yield p %o A274706 def orbital_integral(n): %o A274706 if n == 0: return [1] %o A274706 S = [0]*(1+floor(n^2//4)) %o A274706 for u in unit_orbitals(n): %o A274706 L = list(accumulate(accumulate(u))) %o A274706 S[abs(L[-1])] += 1 %o A274706 return S %o A274706 for n in (0..8): print(orbital_integral(n)) %Y A274706 Cf. A056040 (row sum), A232500, A241810 (col. 0), A242087. %Y A274706 Other orbital statistics: A241477 (first zero crossing), A274708 (number of peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent). %K A274706 nonn,tabf %O A274706 0,4 %A A274706 _Peter Luschny_, Jul 10 2016