This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274708 #27 Mar 27 2020 06:58:01 %S A274708 1,1,2,4,2,4,2,12,15,3,10,8,2,38,68,30,4,26,30,12,2,121,272,183,49,5, %T A274708 70,104,60,16,2,384,1026,912,372,72,6,192,350,260,100,20,2,1214,3727, %U A274708 4095,2220,650,99,7,534,1152,1050,520,150,24,2,3822,13200,17178,11600,4510,1032,130,8 %N A274708 A statistic on orbital systems over n sectors: the number of orbitals with k peaks. %C A274708 The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040. %C A274708 An orbital w has a 'peak' at i+1 when signum(w[i]) < signum(w[i+1]) and signum(w[i+1]) > signum(w[i+2]). %C A274708 A097692 is a subtriangle. %H A274708 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/Orbitals">Orbitals</a> %e A274708 Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1. %e A274708 [ n] [k=0,1,2,...] [row sum] %e A274708 [ 0] [ 1] 1 %e A274708 [ 1] [ 1] 1 %e A274708 [ 2] [ 2] 2 %e A274708 [ 3] [ 4, 2] 6 %e A274708 [ 4] [ 4, 2] 6 %e A274708 [ 5] [ 12, 15, 3] 30 %e A274708 [ 6] [ 10, 8, 2] 20 %e A274708 [ 7] [ 38, 68, 30, 4] 140 %e A274708 [ 8] [ 26, 30, 12, 2] 70 %e A274708 [ 9] [121, 272, 183, 49, 5] 630 %e A274708 [10] [ 70, 104, 60, 16, 2] 252 %e A274708 [11] [384, 1026, 912, 372, 72, 6] 2772 %e A274708 [12] [192, 350, 260, 100, 20, 2] 924 %e A274708 T(6, 2) = 2 because the two orbitals [-1, 1, -1, 1, -1, 1] and [1, -1, 1, -1, 1, -1] have 2 peaks. %o A274708 (Sage) # uses[unit_orbitals from A274709] %o A274708 # Brute force counting %o A274708 def orbital_peaks(n): %o A274708 if n == 0: return [1] %o A274708 S = [0]*((n+1)//2) %o A274708 for u in unit_orbitals(n): %o A274708 L = [1 if sgn(u[i]) < sgn(u[i+1]) and sgn(u[i+1]) > sgn(u[i+2]) else 0 for i in (0..n-3)] %o A274708 S[sum(L)] += 1 %o A274708 return S %o A274708 for n in (0..12): print(orbital_peaks(n)) %Y A274708 Cf. A025565 (even col. 0), A056040 (row sum), A097692, A232500. %Y A274708 Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent). %K A274708 nonn,tabf %O A274708 0,3 %A A274708 _Peter Luschny_, Jul 10 2016