cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274709 A statistic on orbital systems over n sectors: the number of orbitals which rise to maximum height k over the central circle.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 2, 3, 1, 10, 15, 5, 5, 9, 5, 1, 35, 63, 35, 7, 14, 28, 20, 7, 1, 126, 252, 180, 63, 9, 42, 90, 75, 35, 9, 1, 462, 990, 825, 385, 99, 11, 132, 297, 275, 154, 54, 11, 1, 1716, 3861, 3575, 2002, 702, 143, 13, 429, 1001, 1001, 637, 273, 77, 13, 1
Offset: 0

Views

Author

Peter Luschny, Jul 09 2016

Keywords

Comments

The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040.
Note that (sum row_n) / row_n(0) = 1,1,2,2,3,3,4,4,..., i.e. the swinging factorials are multiples of the extended Catalan numbers A057977 generalizing the fact that the central binomials are multiples of the Catalan numbers.
T(n, k) is a subtriangle of the extended Catalan triangle A189231.

Examples

			Triangle read by rows, n>=0. The length of row n is floor((n+2)/2).
[ n] [k=0,1,2,...] [row sum]
[ 0] [  1] 1
[ 1] [  1] 1
[ 2] [  1,   1] 2
[ 3] [  3,   3] 6
[ 4] [  2,   3,   1] 6
[ 5] [ 10,  15,   5] 30
[ 6] [  5,   9,   5,   1] 20
[ 7] [ 35,  63,  35,   7] 140
[ 8] [ 14,  28,  20,   7,  1] 70
[ 9] [126, 252, 180,  63,  9] 630
[10] [ 42,  90,  75,  35,  9,  1] 252
[11] [462, 990, 825, 385, 99, 11] 2772
[12] [132, 297, 275, 154, 54, 11, 1] 924
T(6, 2) = 5 because the five orbitals [-1, 1, 1, 1, -1, -1], [1, -1, 1, 1, -1, -1], [1, 1, -1, -1, -1, 1], [1, 1, -1, -1, 1, -1], [1, 1, -1, 1, -1, -1] raise to maximal height of 2 over the central circle.
		

Crossrefs

Cf. A008313, A039599 (even rows), A047072, A056040 (row sums), A057977 (col 0), A063549 (col 0), A112467, A120730, A189230 (odd rows aerated), A189231, A232500.
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (number of peaks), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).

Programs

  • Maple
    S := proc(n,k) option remember; `if`(k>n or k<0, 0, `if`(n=k, 1, S(n-1,k-1)+
    modp(n-k,2)*S(n-1,k)+S(n-1,k+1))) end: T := (n,k) -> S(n,2*k);
    seq(print(seq(T(n,k), k=0..iquo(n,2))), n=0..12);
  • Sage
    from itertools import accumulate
    # Brute force counting
    def unit_orbitals(n):
        sym_range = [i for i in range(-n+1, n, 2)]
        for c in Combinations(sym_range, n):
            P = Permutations([sgn(v) for v in c])
            for p in P: yield p
    def max_orbitals(n):
        if n == 0: return [1]
        S = [0]*((n+2)//2)
        for u in unit_orbitals(n):
            L = list(accumulate(u))
            S[max(L)] += 1
        return S
    for n in (0..10): print(max_orbitals(n))